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Abstract 

The thesis addresses the applicability of traditional hydraulic theory to an unstable, 
mid-latitude jet where the only wave present is the Rossby wave modified by shear. 
While others (Armi 1989, Pratt 1989, Haynes et a/.1993 and Woods 1993) have exam- 
ined specific examples of shear flow "hydraulics", my goal was to find general criteria 
for the types of flows that may exhibit hydraulic behavior. In addition, a goal was to 
determine whether a hydraulic mechanism could be important if smaller scale shear 
instabilities were present. 

A flow may exhibit hydraulic behavior if there is an alternate steady state with 
the same functional relationship between potential vorticity and streamfunction. Us- 
ing theorems for uniqueness and existence of two point boundary value problems, a 
necessary condition for the existence of multiple states was established. Only certain 
flows with non-constant, negative   Q

dv' have alternate states. 
Using a shooting method for a given transport and a given smooth relationship be- 

tween potential vorticity and streamfunction, alternate states are found over a range 
of beta. Multiple solutions arise at a pitchfork bifurcation as a stability parameter 
is raised above the stability threshold determined by the necessary condition for in- 
stability. The center branch of the pitchfork is unstable to the gravest mode, while 
the two outer branches do not even have discrete modes. Other pitchfork bifurca- 
tions occur as higher meridional modes become unstable. Again, the inner branch 
is unstable to the next gravest mode, while the outer branches do not support this 
discrete mode. These results place the barotropic instability problem into a large 
set of nonlinear systems described by bifurcation theory. However, if the eastward 
transport across the channel is large enough, the normal modes may stabilize and 
these waves have a phase speed less than the minimum velocity of the flow. In this 
case, the flow is analogous to sub-critical hydraulic flow. 

The establishment of these states and the nature of transitions between them is 
studied in the context of an initial value problem, solved numerically, in which the 
zonally uniform jet is forced to adjust to the sudden appearance of an obstacle. The 
time-dependent adjustment of an initially stable flow exhibits traditional hydraulic 



behavior such as control and influence in the far-field. However, if the flow is unstable, 
the instability dominates the evolution. If the topographic slope renders the flow more 
unstable than the ambient flow, then the resulting adjustment can be understood as 

a local instability. 
The thesis has established a connection between hydraulic adjustment and the 

barotropic instability of the flow. Both types of dynamics arise from adjustments 

among multiple equilibria in an unforced, inviscid fluid. 

Thesis Supervisor: Larry J. Pratt 
Title: Associate Scientist 
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Chapter 1 

Introduction 

There are many examples of eastward-flowing jets on the planets, and in particular 

in the atmosphere and the oceans of the Earth. These currents occasionally split, 

forming a double-jet structure. In the atmosphere the double jet passes around a 

persistent, large-amplitude anomaly. This phenomenon is known as blocking and it 

has received considerable attention because of its importance in determining regional 

climate. The bifurcation of oceanic jets is not as well documented, although it appears 

that the Gulf Stream, the Kuroshio and the Antarctic Circumpolar Current split near 

topographic features. The present chapter contains a short review of the observations 

and theories of bifurcating geophysical jets followed by an outline of the thesis which 

is concerned with a theory of bifurcation based on the transitions between distinct 

zonal flows. 

1.1     Observations 

One of the earliest observational papers of atmospheric blocking dates back to Rex 

(1950) who established five criteria which a blocking case must exhibit 

• the basic westerly current must split into two branches, 

• each branch must transport appreciable mass, 

• the double-jet system must extend over 45° of longitude, 



• a sharp transition from zonal type flow upstream to meridional flow downstream 

must be observed across the current split, and 

• the pattern must persist with recognizable continuity for at least ten days. 

These observations suggest that blocking may be thought of as an abrupt transition 

between two distinct zonal flows, a narrow flow upstream and a split flow downstream. 

A more recent, extensive study of blocking events by Dole, 1982 and Dole and 

Gordon, 1983 stress several additional observations 

• during the onset and decay of the blocking event, several Fourier components 

of the block amplify and decay simultaneously, 

• the final vertical structure of the block is equivalent barotropic, and 

• the blocking events are not spatially correlated around the globe. 

As Malguzzi and Malanotte-Rizzoli (1984) point out, the first two of these observa- 

tions are consistent with nonlinear behavior which may cause phase locking and the 

formation of coherent structures. Other indications of nonlinearity are the formation 

of closed streamlines observed by Hansen and Chen (1982). Illari and Marshall (1983) 

and Illari (1984) also note that closed streamlines may occur in blocking events, and 

stress the role of eddy interactions in the maintenance of the block. The final point by 

Dole, that the blocking structures are not spatially correlated, suggests that blocking 

is fundamentally a regional, rather than global process. 

The bifurcation of oceanic jets has been observed much less frequently, although 

it appears that both the Kuroshio and the Gulf Stream may bifurcate, or at least 

widen, in the presence of topography. In the Kuroshio system, Mizuno and White 

(1983) use maps of temperature at 300m to identify a secondary northern branch of 

the current in the vicinity of the Shatsky Rise. They also note that during one year 

(spring 1979 to summer 1980) the bifurcation point moved continuously upstream, to 

a point lOOOfcm west of the Shatsky Rise. In addition, their observations show large 

amplitude meanders downstream of the Shatsky Rise. In the Gulf Stream system, 

the Geosat altimeter was used by Kelly (1991) to identify two different regimes, 
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which are connected by a narrow transition region at the New England Seamount 

chain. Upstream of the seamounts, the flow is characterized by straight Gulf Stream 

paths and eastward-propagating meanders. The downstream path is broader, with 

larger meanders and no consistent propagation direction, i.e. waves may propagate 

both up- and downstream. In addition, smaller-scale recirculation gyres were located 

upstream of the transition. A recent numerical investigation (Ezer, 1994) using a 

primitive equation model of the Gulf Stream region, reproduced these features of the 

transition. By eliminating the New England Seamount Chain they eliminated the 

recirculation cells and showed that this transition is indeed due to the topography, 

and not local atmospheric forcing. In addition, Lee and Cornillon (1994a, 1994b) 

also observe that long wavelength meanders can propagate upstream. Both sets of 

observations point to the importance of understanding the abrupt spatial transitions 

between different zonal flows, and the role of upstream propagating waves in such a 

transition. 

Certainly neither the Gulf Stream system at the New England Seamounts nor the 

Kuroshio at the Shatsky Rise are typically thought of as forming "split" flows, and 

so are not truly analogous to the atmospheric block. The Gulf Stream maintains 

its single jet structure until it reaches the Southeast Newfoundland Rise. It is this 

region of the ocean that provides the strongest example of a split jet and accordingly 

a history of the hydrographic measurements in the area is summarized here. 

Helland-Hansen (1912) conducted the earliest sections in this area, measuring 

temperature and salinity to 2000 m. Traveling north along 50°W they abruptly passed 

from the Sargasso Sea to a colder, fresher region; north of this region they returned 

to a warmer more saline mass, similar to the Sargasso Sea waters. Based on these 

observations, Helland-Hansen proposed that the Gulf Stream split into two branches, 

although the branch point could not be well-defined because of the sparseness of 

the observations. Using the available temperature data, Iselin (1936) constructed a 

streamline map based on the depth of the 10° isotherm. This map shows the Gulf 

Stream separating into two branches close to 40°iV, 47° W. The northward branch 

forms the North Atlantic Current, while the southern, more diffuse branch becomes 
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the Azores current. 

In contrast to the branching current hypothesis, Worthington (1962, 1976) , using 

data collected during the International Geophysics Year, proposed that the Southeast 

Newfoundland Rise separates the circulation of the North Atlantic into two anticy- 

clonic gyres. Worthington's scheme is based on the observed distribution of dissolved 

oxygen, which showed that the water in the northern gyre was lml"1 /1 richer in 

oxygen than the Gulf Stream waters in the same T — S class. 

Motivated by the discrepancies between Worthington's two gyre hypothesis and 

the earlier proposed schemes, Mann (1967) , carried out the first comprehensive sec- 

tions of the area in the spring of 1963 and 1964. The sections from 1963 made up a 

synoptic picture of the area. The dynamic topography, referenced to 2000 m, (Figure 

1-1) indicates one current rounding the ridge, forming an elongated cyclonic mean- 

der, before splitting at 38°iV, 44°W. The 1964 cruise revisited the ridge area and, in 

a series of sections, observed a similar cyclonic meander pinch together, forming a 

closed eddy. Although a synoptic map of dynamic topography can not be drawn for 

the 1964 cruises, the pinch-off may move the splitting point of the current further 

north to approximately 40°iV, 47°W. Mann also calculated the transports of the two 

branches relative to 2000 m. The branch turning northward to follow the ridge (the 

North Atlantic Current) carried approximately 35 Sv, (15 Sv of which came from the 

slope water), while the southern branch transported 30 Sv, and marked the northern 

boundary of the 18° water. Mann was also able to resolve a large anticyclonic eddy 

to the northeast of the branch point. 

Clarke et al. (1980) carried out a three-ship survey of the region, with better 

spacing than Mann (1967) in order to reconcile Mann's circulation and Worthington's 

measured water mass distributions. The dynamic topography (Figure 1-2), referenced 

to 2000 db is similar to Mann's map. The jet passes over the Southeast Newfoundland 

Rise, forming a low pressure trough over the ridge. This trough is less elongated than 

the 1963 meander, and a small low pressure cell, located at the same point as Mann's 

branch point (39°N,4A°W) is present in the 1972 data. The map clearly shows a 

branching of the dynamic height contours at 40°iV, 46°W.   The anticyclonic eddy, 
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first discovered by Mann, is also apparent. Although differing in detail, the dynamic 

topography map favors Mann's interpretation of the bifurcation. The authors also 

proposed that the oxygen distribution in the North Atlantic current observed by 

Worthington could be consistent with a branching current, if a "reasonable" amount 

of lateral mixing (a diffusion coefficient of 107cm2s^1) with the northern water was 

taken into account. 

During the spring of 1987, a comprehensive hydrographic survey was carried out in 

conjunction with satellite-tracked buoys and infrared images by Krauss, et al. (1990) 

in order to analyze the eddy field and the branching of the Gulf Stream. Based on the 

dynamic topography, they found that the Gulf Stream splits near 40oiV,AQ°W, the 

same location found by the previous authors. In addition, they found that there was 

intense eddy activity, and concluded that the splitting is a highly dynamic process. 

More recently, Koshlyakov and Sazhina (1994), also observed the Gulf Stream split 

at Z9°N,A6°W, at the tip of a large-amplitude cyclonic meander oriented along the 

Southeast Newfoundland Rise. In addition to this meander, a large anticyclone was 

observed northeast of the branch point. A second survey, carried out four weeks later, 

shows that the cyclonic meander detached, forming a very strong cyclonic meander, 

with isotherms doming up 800m in the main thermocline. This ring is located south 

of the anticyclonic eddy, forming a dipole structure. 

All of the observations from the Gulf Stream splitting region indicate that the jet 

bifurcates at approximately the same place, at the tip of the Southeast Newfoundland 

Rise. Thus, the splitting is a permanent feature of the circulation and appears to be 

due to the interaction of the jet with the topography. Although the splitting has been 

repeatedly observed, the region has several intense eddies, indicating that the process 

is highly dynamic. 

Because the Antarctic Circumpolar Current is composed of several fronts (Nowlin 

and Clifford, 1982), it has more freedom to widen and narrow in the presence of 

topography. Upon examination of the Gordon et al. (1986) atlas, Pratt (1989) points 

out that the Circumpolar current does indeed narrow, by nearly a factor of one-half, 

downstream of both the Kerguelen Plateau and the Macquarie Ridge. Drake Passage 
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is another region where transitions between different flows take place. Upstream of 

Drake Passage the current system is quite broad, while in Drake Passage the flow 

narrows before abruptly widening downstream of the passage. 

1.2     Previous Theories 

Because the blocking states are quite long-lasting compared to the synoptic time scale, 

a number of theories have attempted to identify blocking events and their absence 

with multiple equilibrium states of the atmosphere. Charney and DeVore (1979) 

considered a global mechanism by using a highly truncated spectral model in a re- 

entrant channel. The system is perturbed by topography or by thermal forcing. For 

a given forcing function, multiple equilibria were found and they may be associated 

with planetary waves which are resonant on a global scale. The high amplitude states 

are associated with blocking and the low amplitude equilibria are associated with the 

unblocked state. A drawback of this model is its reliance on global modes which must 

propagate around the globe without a significant loss of amplitude. In addition, the 

global model is not consistent with the regional location of blocking events in the 

atmosphere and the location of split jets in the ocean. 

Pierrehumbert and Malguzzi (1984) also considered multiple equilibria. However, 

their theory was based on a local mechanism; multiple equilibria were found to exist in 

a local balance independent of the conditions outside the blocking region. They found 

that if the inviscid and unforced system has a steady state with closed streamlines 

(for example, a modon) then the weakly forced and damped system can exhibit both 

a low amplitude state which is nearly zonal and a high amplitude state with closed 

streamlines. 

Although Pierrehumbert and Malguzzi cited the observational work of Illari (1984) 

to suggest that eddy activity provided the forcing in their system, they explicitly 

gave the forcing as a function of the spatial coordinates, rather than letting the 

dynamics determine the forcing. In contrast, Haines and Marshall (1987) did consider 

dynamically consistent eddy forcing.    A wavemaker was used to introduce eddies 
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of alternating signs. This forces a disturbance equation in which the disturbance 

potential vorticity is advected by the mean flow and potential vorticity is gained 

by disturbances passing through mean potential vorticity gradients. Given the eddy 

activity determined by this equation, the eddy flux divergence was calculated and 

explicitly used to force the equation governing the mean flow. They found that 

nonlinear free modes could readily be excited by the local eddy forcing and a high- 

amplitude modon structure was formed. 

A second class of local equilibrium solutions to the blocking problem has been 

developed by Malguzzi and Malanotte-Rizzoli (1984). In this case the solutions are 

weakly nonlinear solutions of the potential vorticity equation and therefore closed 

streamlines are not present. The potential vorticity is a single-valued function of 

the stream function. The solutions are long, stationary solitary waves in the zonal 

flow and the governing equation is the steady Korteweg-deVries equation. More 

recently, Helfrich and Pedlosky (1993) considered the time-dependent dynamics of 

these weakly nonlinear solitary waves when the background zonal flow was near the 

baroclinic stability threshold. If the flow is stable, but only marginally so, the solitary 

wave is unstable and it may break up into two smaller stable solitary waves or it may 

implode, forming a narrow and stronger solitary wave. More recent work by the 

authors (Helfrich and Pedlosky, 1994) on the imploding solitary wave shows that it 

equiHbrates as a finite-amplitude, zonally uniform structure with closed streamlines. 

This region is connected to the undisturbed up- and downstream flows by narrow 

meridional jets and thus the equilibrated state represents a transition between two 

distinct zonal equilibria. The authors suggest that the instability of the solitary wave 

provides a link between the weakly nonlinear theories of the KdV soliton and the 

fully nonlinear theories considered by Haines and Marshall (1987). 

Theories on the splitting of large scale jets in the ocean are much rarer, probably 

because documented examples of splitting are rarer in the ocean. One of the earliest 

papers concerned with a theory of why the Gulf Stream splits is Warren (1969). 

Noting that the branching occurs in a region where the bottom contours diverge, 

Warren investigated the effect of diverging isobaths on a fluid in which potential 
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vorticity is conserved. The flow is assumed to be a rectangular jet which passes over 

a region where the topographic slope changes slowly in the zonal direction so that 

up- and downstream have quite different topographies. Because the zonal change 

in the topographic slope is gradual, the curvature term is neglected in the vorticity 

equation meaning that the x-dependence is merely parametric, so the velocity profile 

for a given topography may be found by integrating an ordinary differential equation 

in y. If the Rossby number is larger than the change in depth across the current, 

divided by the total depth, then inertia constrains the current to hold together in a 

single jet. However, if the topographic slope is large enough however, then the flow 

will follow the bottom contours and split. 

Another line of work on splitting jets is based on an analogy with open channel 

hydraulics. Transitions occur between alternate states which may be either sub- or 

supercritical with respect to the upstream propagation of long waves. In several sim- 

ilar systems, Benjamin (1966, 1967, 1984) and Pratt (1984a, 1984b) has shown that 

the supercritical flows support stationary KdV solitary waves. Following Benjamin's 

method for planetary flows reproduces Malguzzi and Malanotte-Rizzoli's results for 

the amplitude and length scale of the solitary wave based on the shear of the mean 

flow. The stationary solitary wave (and the strongly nonlinear wave considered by 

Haines and Marshall) only exists in a supercritical flow. A subcritical flow supports 

stationary Rossby waves which will radiate energy away from a coherent structure. 

Using the weakly nonlinear equation with a small constant to parameterize an en- 

ergy loss from dissipation, Benjamin was able to show that a transition between two 

distinct zonal states, from a supercritical one to a subcritical could take place. Ben- 

jamin's method can easily be used for the planetary flows considered here, but in light 

of his highly simplified parameterization of the dissipation and the instability found 

by Helfrich and Pedlosky, these calculations are not relevant. 

The analogy between open channel hydraulics and planetary flows predates even 

Benjamin's work. Rossby (1950) first suggested that the transition to a split flow may 

be analogous to a hydraulic jump; however, in planetary flow the abrupt expansion is 

lateral rather than vertical because of the nature of planetary waves. Such a transition 
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from supercritical to subcritical flow would be accompanied by energy loss; Woods 

(1993) estimated the energy loss due to such a transition, and speculated that it 

would be dissipated through the generation of intense eddies, the scale of which he 

estimated based on the strength of the jump. In fact, the observations of the lateral 

jump in width of the Gulf Stream system, accompanied by vigorous eddy activity, 

are what first motivated me to consider transitions between conjugate zonal flows as 

a model of bifurcating jets. The additional observations by Kelly (1991) of the Gulf 

Stream near the New England seamount chain also suggest a hydraulic transition 

from supercritical flow to subcritical flow. Because this idea motivated the thesis, a 

full review of later work on planetary scale hydraulics by Armi (1989), Pratt (1989), 

Woods (1993) and Haynes et al. (1993) is given in the next chapter. 

1.3     Outline of thesis 

The observations and previous theoretical work suggest considering transitions be- 

tween distinct, steady, zonal flows, i.e. transitions between multiple equilibria and 

in particular transitions between hydraulic states. An objective of the thesis is to 

examine the theory of planetary scale hydraulics, not simply to look at the phenom- 

ena such a theory produces, but also to explore its strengths and limitations as a 

conceptual model for understanding the behavior of geophysical zonal jets. 

Thus, rather than simply explore a single example of zonal flow are exhibit 

hydraulic behavior as the previous investigators have done, Chapter 2 establishes 

a necessary condition for the existence of multiple zonal flows with the same Q{ij>) 

structure. These multiple states have been interpreted by the previous investigators as 

alternate hydraulic states. Using a simple Q{ij)) function that satisfies this necessary 

condition, multiple states are found via a shooting method and their interpretation 

was investigated by calculating dispersion relationships for the several flows found. 

The major findings of this chapter are: 

• A necessary condition for the existence of multiple equilibria in an inviscid, 

unforced quasi-geostrophic channel is that dQ/dip is negative and bounded from 
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above by 

where 2L is the width of the channel. 

• Multiple solutions arise at a pitchfork bifurcation as a stability parameter is 

raised above the stability threshold determined by the necessary condition for 

instability. 

• The center branch of the pitchfork is unstable to the gravest mode, while the two 

outer branches do not even have discrete modes. Other pitchfork bifurcations 

occur as higher meridional modes become unstable. Again, the inner branch 

is unstable to the next gravest mode, while the outer branches do not support 

this discrete mode. 

Chapter 3 is devoted to the time-dependent adjustment of these flows. The numer- 

ical experiments were specifically designed to search for hydraulic behavior. Several 

zonal flows are perturbed by the introduction of topography. If the topographic slope 

exceeds a value predicted by the steady state theory of chapter 2, the resulting adjust- 

ment establishes distinct zonal flows which can be qualitatively understood in terms 

of local instabilities and hydraulics. Three types of transitions between zonal flows 

were observed: 

• Stable, sub-critical flow adjusts in a similar way to a hydraulic adjustment; up- 

and downstream influence is established simultaneously. 

• If the flow is unstable, the instability dominates the evolution. If the topo- 

graphic slope renders the flow more unstable than the ambient flow, then the 

resulting adjustment can be understood as a local instability. 

• A narrow, eastward jet, belonging on the outer branch of the solution curve, 

forms a split flow around the ridge.   The transition is localized; no far-field 
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effects are established. The transition is conservative and bears no resemblance 

to a hydraulic jump. 

In all cases, there is a transition among distinct zonal flows with the same Q(ip) 

structure. 

Since the majority of the thesis work is carried out for a single layer fluid inside a 

channel, Chapter 4 is a brief chapter devoted to the existence of multiple states in an 

unbounded domain. Pairs of multiple solutions are found, but in the simple example 

explored here both are unstable, suggesting that the equilibration to an alternate 

zonal flow cannot take place. 

The thesis has established a connection between hydraulic adjustment and the 

barotropic instability of the flow. Both types of dynamics arise from adjustments 

among multiple equilibria in an unforced, inviscid fluid. These findings are reiterated 

in Chapter 5, which contains a summary of the thesis and a brief discussion of the 

strengths and limitations of the conceptual model developed here. 
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Figure 1-1: Dynamic topography relative to 2000m, from Mann, 1967. 
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Figure 1-2: Dynamic topography relative to 2000m, from Clarke et al, 1980. 
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Chapter 2 

Steady Alternate Flows 

2.1     Introduction 

Jets in the atmosphere and ocean are continually disturbed by external forcing. These 

forcings often generate waves that evolve into patterns that bear little resemblance 

to the initial forcing. Pattern formation in atmospheric and oceanic jets can be 

understood in terms of scale-selective shear instabilities caused by excessive horizontal 

shear (barotropic instabilities) or vertical shear (baroclinic instabilities). Recently, 

much work has been done on the non-dissipative equilibration of these instabilities; 

as the flow evolves to some new state it must do so with the same potential vorticity 

and pseudo-momentum. On the other hand, Armi (1989) and others (Pratt, 1989; 

Woods, 1993; Haynes et al., 1993) have suggested that an eastward jet on the /3-plane 

may behave as a hydraulic system because they found examples of jets which have 

an "alternate state," i.e. another flow with the same transport and energy flux. This 

suggests another mechanism (transition to the alternate state) by which the flow can 

equilibrate after a perturbation. In this chapter, the "hydraulic theory" of planetary 

shear flows is examined in more detail to determine whether shear flows do indeed 

have all the identifying characteristics of a hydraulic system. This examination in 

turn will shed some interesting light on the instabilities of these flows. 

It is helpful to review the simplest and most studied example of a hydraulic system 

to understand how transitions between alternate states may take place. Open channel 
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flows are gravitationally driven flows which have a laterally uniform velocity in the 

downstream direction. For a given mass transport and energy transport two flows 

are possible. One is a fast, shallow flow that is supercritical; 1 the other is deep, slow 

and subcritical. The subcritical flow has an excess of momentum flux compared to 

the supercritical flow with the same transport and energy. 

Consider an obstacle in a subcritical stream which exerts a force against the flow. 

This force must be balanced by a reduction of the momentum flux in the fluid. For 

a small obstacle, the reduction occurs as lee waves form downstream of the obstacle. 

If the obstacle is large enough, the reduction is brought about by a transition to 

the supercritical alternate state in the region downstream of the obstacle. In this 

case the entire flow is controlled by the obstacle; waves in the subcritical upstream 

propagate from the obstacle up- and downstream, while waves in the supercritical 

flow only propagate downstream. At the control the flow is critical and through the 

wave propagation, the relationship between the depth of the fluid and the velocity in 

the entire domain is determined. 

If the upstream flow is supercritical, then a transition to the subcritical alternate 

state would result in an excess of momentum, i.e. an external force must push down- 

stream to stem the excess momentum associated with the rise in water level. Instead, 

the flow "breaks" at the transition and a hydraulic jump forms. The downstream 

subcritical conjugate state (which is a different subcritical flow than the alternate 

state) is one that has the same fluxes of mass and momentum as the supercritical 

upstream. However, it is important to note that the downstream flow is not caused by 

the upstream conditions but rather by some control or forcing further downstream. 

If this downstream establishment of the flow produces the required subcritical conju- 

gate state, then a jump will form somewhere between the upstream and downstream 

flows. 

There have been numerous studies of "hydraulic" behavior in geophysical flows. 

xThe terminology "super-" and "sub-critical" is confusing in a discussion that involves hydraulics 
and instabilities. Because the present work is an exploration of the possibility of hydraulics behavior, 
the hydraulics terminology will be used. Flows on either side of a stability threshold will simply 
deemed "stable" or "unstable." 
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In particular for flows through straits and over sills. A single-layer rotating channel 

model was introduced by Whitehead et al. (1974), and Gill (1974) who considered 

the behavior of steady flow in a rotating channel. The theory of rotating hydraulics 

has been further explored by Pratt (1983, 1984a, 1985), and Hogg (1983) considered a 

two-layer rotating hydraulics problem. This work, and more recent work on rotating 

channel flow has been reviewed by Pratt and Lundberg (1991). In these examples, 

the boundary Kelvin waves are the dominant wave which determines the structure of 

the flow. 

A hydraulics theory has also been invoked to determine the point at which the Gulf 

Stream separates from the coast. Charney (1955) identifies the point of separation 

as the position at which the isopycnal surfaces at the base of the current outcrop. In 

Charney's l| layer model, this is located where the single interface outcrops and this 

position is coincident with the point at which a southward propagating Kelvin wave 

is arrested by the northward velocity of the current. Blandford (1965) considered a 

multi-layer model and the outcropping is again coincident with the point at which the 

slowest-moving Kelvin wave is arrested. However, the latitude of the outcropping sur- 

face was much lower than Charney's separation latitude, and too low to be considered 

for the Gulf Stream separation problem. Luyten and Stommel (1985) explained this 

problem in terms of the hydraulics of a Kelvin wave. The inertial boundary current is 

the site of a control which determines the upstream relationship between the thermo- 

cline structure and the layer depth. Luyten and Stommel considered a zero potential 

vorticity case in which the water comes entirely from the equator. In contrast, Huang 

(1990a, 1990b) considered a flow with non-zero potential vorticity, which better mim- 

ics the Gulf Stream structure, whose waters come from mid-latitudes. Huang finds 

multiple solutions, lying along separate branches which connect at a critical set of 

parameters. The critical solution, where the two solutions merge, is the solution for 

which the Kelvin wave speed vanishes (Huang, pers. comm.). 

In all of these cases, the waves that establish control are the " fast" modes due to 

boundary or coastal Kelvin waves. Hughes (1985, 1986, 1987) has also considered the 

criticality of Kelvin wavs in coastal boundary currents. However, by considering flows 
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with a potential vorticity gradient, Hughes also found that a "slow" mode, in the form 

of a topographic Rossby wave, can also serve as the means of control. In addition, 

Pratt and Armi (1987) analyzed in detail a rotating channel flow with non-uniform 

potential vorticity and identified a series of multiple states, associated with both 

gravity waves and Rossby waves. In these cases, where the effect of gravity plays a 

dominant role, it is difficult to isolate control due to the vorticity waves alone. Since in 

the open ocean inertial jest like the Gulf Stream, the Antarctic Circumpolar current, 

or the atmospheric jet stream are free of boundary Kevin waves, it is important to 

consider the control problem in terms of vorticity waves alone. 

Berggren, et al. (1949) and Rossby (1950) first proposed a hydraulic theory of 

planetary flow to suggest that atmospheric blocking may be analogous to a hydraulic 

jump. Rossby's 1950 paper, summarized by Rex (1950) shows that there may be 

two uniform flows on the /?-plane with different widths but the same transport and 

momentum flux. Armi (1989) re-introduced this work and argued that subcritical 

flow may pass through a control region (due to along-flow pressure changes) and be- 

come supercritical. In both of these works, the velocity up- and downstream of the 

transition is assumed; however, the velocity structure must be determined by the 

dynamics of the flow. By assuming conservation of potential vorticity, Pratt (1989) 

analytically constructed two alternate quasi-geostrophic jets which have the same 

piecewise-linear potential vorticity but different widths. Using a piecewise constant 

potential vorticity, Haynes et al. (1993) also constructed alternate quasi-geostrophic 

shear flows. They were able to classify them as supercritical and subcritical with 

respect to the long waves. Woods (1993) analytically constructed smooth alternate 

shallow water states by finding similarity solutions using the method of Benjamin 

(1981). The authors of these three papers carefully constructed alternate states which 

are consistent with potential vorticity conservation and explicitly showed that topog- 

raphy acted as a mechanism for control in their examples. 

This chapter further explores the steady state theory of alternate planetary flows 

which have the same transport and potential vorticity - streamfunction relation but 

different velocity profiles.   As in Pratt (1989) and Haynes et al.   (1993), the quasi- 
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geostrophic approximation is made. However, rather than explore a single example of 

alternate flows, the goal of this chapter is to determine a general criterion for which 

potential vorticity - streamfunction relationships have alternate states. Section 2.2 

reviews the model used in the present study, and section 2.3 reviews how alternate 

shear flows are characterized in terms of their momentum fluxes. The next section 

explains how parallel flows are characterized by the behavior of small amplitude waves. 

This characterization is important in a hydraulics interpretation of alternate flows and 

was not carried out fully by Pratt (1989) or by Woods (1993). Using mathematical 

theorems on the uniqueness of solutions to a differential equation, §2.5 explores which 

shear flows may have alternate solutions. In the remaining sections, several examples 

of alternate shear flows are studied numerically and characterized in terms of their 

momentum flux and their wave dynamics. These sections indicate that "alternate 

states" arise from the existence of unstable equilibria and do not fit all the criteria 

of a hydraulics system. Using ideas from hydraulics theories and from instability 

theories, §2.8 suggests two mechanisms by which flows may pass to their alternate 

states. These ideas are tested more fully in chapter 3. 

2.2     The model 

As described in Chapter 1, we consider the simplest example of shear flow in a geo- 

physical setting. The fluid is assumed to be a single, steady, inviscid layer subject to 

the constraints of quasi-geostrophy on the ß—plane. In the absence of forcing, the 

0(e) equations of motion are 

£ - * - ** = -& <»> 

dx dy \dx dy J 
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The notation is standard 

u,v       (zonal, meridional velocities) 

—   =   —  + u0—  + v0--- (the material derivative) 
Dt        dt ox oy 

7]   (the pressure at the top surface) 

T]B (the bottom elevation). 

The variables have been non-dimensionalized using typical scales U, L, D for the 

horizontal velocity, horizontal length, and fluid depth. The relevant dimensionless 

parameters are 

e  =   —    <<   1 the Rossby number 

B*L2 

ß  =        =  0(1)   the dimensionless planetary vorticity gradient. 

The numeric subscripts refer to the order in the asymptotic expansion in e. 

Conservation of potential vorticity is established by taking the curl of the momentum 

equations and using continuity 

§fi = °- <2-4) 

The quasi-geostrophic potential vorticity is defined as 

Q  =  V2V>  + f(x,y) 

where / is the ambient vorticity due to the Coriolis effect and bottom topography 

and the streamfunction if) is the geostrophic streamfunction 

4>x  = v0 

-lf)y =        UQ. 
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Because the flow is steady, the conservation equation may also be expressed as 

Jty,Q)  =  0, (2.5) 

where J(A, B) represents the Jacobian of A(x,y) and B(x,y) with respect to the 

coordinates x and y. By definition, when the Jacobian of two fields vanishes, we 

may regard one as a function solely of the other. In the absence of forcing the Q(iß) 

relation must have been determined upstream where forcing such as wind stress and 

dissipation due to eddies are more important than inertial effects. The Q(i>) relation 

is carried from there along the streamlines into the free inertial region of interest. 

In hydraulic theories, we assume that the structure of the basic flows are slowly- 

varying in a;, the direction of flow. The flow structure iß(y) is then determined by the 

long-wave potential vorticity equation: 

|^ + f(y) = W). (2-6) 

The boundary conditions for this second order differential equation depend on the 

physical domain of the problem. If the flow is bounded at y = ±L, the geometry 

is a channel. Since the flow can not pass through the channel walls the normal 

velocity must vanish there, implying that the streamfunction is constant along the 

walls. Without any loss of generality, these constants are defined as 

V  =   ±V^   at  y  =  =p£. (2.7) 

The streamfunction at the wall is determined by the dynamics of the flow and may 

vary in time. However, in the present problem, we will be considering disturbances 

that are isolated in a;. In this case 

dj>w   _  „ 
dt    ~    ' 

since ij?w cannot change far away from the disturbance.   Often in geophysical fluid 
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problems the channel is assumed to be periodic, representing a complete latitude 

circle. If this is the case, the integrated z-momentum equation (2.1) leads to 

— /     udx   =  0    at    y  =  ^L. (2.8) 
Ot J-oo 

In a hydraulic system, the up- and downstream flows are not necessarily the same 

and we are not considering a periodic channel. In this case, the boundaries at ±L 

are not closed, and (2.8) need not apply. Instead, the ageostrophic pressure gradi- 

ent compensates for the change in momentum. This ageostrophic pressure will be 

discussed further in section 2.3. 

The possibility of alternate flows depends on whether a particular Q(tp) allows 

non-unique solutions to (2.6) for the same ambient potential vorticity. This question 

of non-uniqueness will be taken up in section 2.5; first we consider how to classify the 

flows by considering fluxes of energy and momentum and also the speed of long-waves. 

2.3     Fluxes of Energy and Momentum 

In this inviscid, unforced system several quantities are conserved. One, the potential 

vorticity, was discussed in the previous section. A second conserved quantity is the 

energy. An energy equation can be constructed by adding u0  x  (2.1) + v0  x  (2.2) 

D_ U^vl  +     \   + voUi _ UoVi  = Q (29) 

This equation may be expressed as a quantity conserved along geostrophic streamlines 

by mathematically constructing an 0(e) "streamfunction" from the 0(e) continuity 

equation 

dx 
-VOVB  + vu 

dy 
UoVB   -   «1- 

30 

(2.10) 



Using this "streamfunction" in the steady form of (2.9) we find the equation, 

dB dB ,n„. 
u°ir + v°ir = ° 2.11 ox oy 

i.e B is conserved along geostrophic streamlines where 

B(*) = ^^ +m-^ (2-12) 

In fact, by using this 0(e) "streamfunction" in the momentum equations 

(a   JL      _L 
dv°     du°\ (    du°  .      dv°  .  d(Vi-i>i)\      dB foi*\ {ßy + VB + ^- ^-J ,o = [u0 — + v0— + —^) = ^ (2.13) 

'ßy + VB + %l- %>) u0 = («** + „** + ^iptA) = *?. (214) 
v                  dx       dy             \     dy          dy            dy       I      dy 

we find that 
dB „,,„ , 
^  =  Wo). (2.15) 

The function B(i}>) is a quasi-geostrophic version of the /?-plane Bernoulli function 

discussed by Ball (1954) and Woods (1993). 

The Bernoulli function may be used to show that energy is conserved in an inviscid 

transition between two zonal flows with the same Q(if>) in a channel of width 2L, since 

if potential vorticity is conserved, then the Bernoulli function (and therefore energy) 

are also. The energy equation (2.11) is integrated over the domain of the fluid 

f+L r=E f    QB dB\ 
0 = /    /      u°-^—i" v°~~z~ dxdy J-L  Jx=A   \     ox oy j 

r+L n rx=B 
i     uQBdy\xxz

B
A  +   f     v0Bdx\+_LL. 

J—L Jx=A 

The second term must vanish because there can be normal flow through the channel 

walls. Thus, the energy flux, G = J^u0Bdy, must be the same upstream (at 

x — A) and downstream (at x = B) of a transition. This can be seen more easily 

by direct integration of 2.15 across the streamlines in the channel (which is what the 
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previous integration is). 

The drawback of the quasi-geostrophic Bernoulli function is the presence of the 

ageostrophic pressure r}X — V'I- However, for strictly zonal flows, these ageostrophic 

terms may be re-expressed as an 0(1) quantity using (2.14) 

/ 

y . 
(ßy + VB) U0 dy  =  T/i  - Vi- (2.16) 

-L 

The ageostrophic pressure gradient is due to meridional variations in the Coriolis 

force and the bottom topography. 

The amount of momentum flux is used to classify alternate flows in open chan- 

nel hydraulics; subcritical flows have an excess of momentum flux. If a control is 

established, then momentum flux is lost in the transition to supercritical flow due to 

topographic drag on the flow. For the quasi-geostrophic flow a similar loss is found 

by integrating the zonal momentum equation (2.1) across the channel in y and along 

x from a point (x = A) upstream of the transition to downstream (x = B). Using 

ifix again, this leads to 

"12 = -/^Tsr***- (2'17) 

where 
t+L 

M =  J      (u2
0  + 7/i   - ij>i)dy. 

Equation (2.17) shows explicitly that any difference in the momentum flux (the left 

hand side) is due to the momentum loss from form drag (the right hand side). Using 

(2.16) for the ageostrophic pressure, the momentum flux for zonal flows may also be 

expressed in terms of 0(1) quantities. 

An alternative approach is to follow the method of Benjamin (1984) and consider 

the impulse. The fluid impulse is the amount of force needed to generate the entire 

flow from rest (Batchelor, 1985).   For a two-dimensional, non-rotating system with 
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vorticity co, the total impulse vector is therefore 

I  =   -     x x ujdA, 

where the integral is taken over the entire fluid domain.   On the /?-plane, the total 

vorticity includes the ambient vorticity, and the total zonal impulse is therefore 

I = \JyQdA. 

Conservation of / is determined from (2.4) by multiplying the equation by y 

foivQ) + MyQ)x + vo(yQ)y - voQ = o, 

or, with the continuity equation ^ + ^p- = 0, 

in {yQ) + (u0yQ)x + {voyQ)y - v0Q = 0. 

The final term may be written as the divergence of a flux (Bretherton, 1966a) and, if 

topography is present, a drag term 

voQ  =   «r- ox ßyi> + VB*1> + 2vo - ul 
d drjB . 

The conservation law becomes 

di (y®^ + dx \2V° + 2U° ~ ^ ~ VB^ + yu°Q) + Y (U°V° + yV°® = ~~dx^' 
(2.18) 

This equation is integrated over the domain in y, and from — oo to oo in x.   The 

application of the boundary conditions (2.7) on v(±L) causes the third term on the 

left hand side to vanish. In many other geophysical applications, the second term on 

the left hand side cancels due to periodicity, and in the absence of topography the 
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right hand side cancels also, leaving 

d   f+L  r+°° d 

i.e. pseudo-momentum is conserved. Conservation of / is used to calculate bounds in 

nonlinear global stability problems (i.e. Arnol'd (1966), Shepherd (1988), Dritschel 

(1988), BeU and Pratt (1994)). 

In the present search for hydraulic behavior, periodicity in x is not assumed. If the 

transition is an example of a hydraulic control then the controlled flow has different 

flow structures upstream and downstream of the control. In addition, the flow is 

assumed to have reached steady state after some adjustment that has established the 

control. Because the alternate flows have no ^-variations away from any transitions 

between them, the integrated conservation equation (2.18) reduces to 

S\:Z+-~  =  - f+L f °° ^rfrdxdy, (2.19) 
J-L   J-oo      OX 

where 

S  =  1^ Qug - ßytl> + yu0Q^) dy (2.20) 

Equation (2.19) also shows explicitly that any difference in the flux as the flow passes 

from subcritical to supercritical at the control is due to the momentum loss from 

form drag. Integration by parts (using Q = ipyy + ßy) shows that this form of 

the momentum equation is equivalent to (2.17), which is hardly surprising since con- 

servation of momentum and conservation of pseudo-momentum differ only by the 

divergence of a flux. 

The flux of impulse, S, is equivalent to the "flow-force" used by Benjamin (1984) in 

many examples of hydraulics problems. Benjamin demonstrated that the dynamical 

problem (2.6) is equivalent to the variational equation 8S = 0. If the integrand of 

S is abbreviated as s(^-,tp,y), then SS  =  0 is true if ij> satisfies the Euler equation 
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(Courant and Hubert, 1953) 

d_ (ds\   _   ds_ 

dy \dil>y)       di> 
0, 

du +% " ft' + W) = o 

which is precisely equation (2.6).  Each alternate state which satisfies (2.6) must be 

an extremum of S. 

2.4    Wave Properties 

Alternate flows may also be classified by the behavior of long-wave small amplitude 

disturbances. As in open channel hydraulics, flows are supercritical 2 if long-wavelength 

disturbances can only propagate downstream, which means that small amplitude sta- 

tionary waves can not form. Because stationary waves are not possible, Rossby wave 

radiation is prevented and a supercritical flow may support stationary coherent, finite 

amplitude structures. 

In a hydraulics interpretation, flows are classified as subcritical if long-wavelength 

disturbances can propagate both upstream and downstream. Because upstream 

propagation is possible, subcritical flows are capable of supporting stationary waves. 

These waves have a group velocity directed downstream, and so stationary waves can 

form in the lee of an obstacle. 

A flow is critical if the long-wave disturbances are stationary. By considering a 

general class of "hydraulics" problems, Gill (1977) showed that the critical flow is 

also the flow for which two alternate states are equal because a flow that is close to 

critical will differ from its alternate by only a small disturbance; as the flow approaches 

criticality the speed of this disturbance must approach zero. 

In order to determine the propagation speed and classify a quasi-geostrophic flow, 

see note on pg. 24 
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the background state is disturbed so that the streamfunction $ of the perturbed state 

is given by 

V(x,y,t)  = 1>(y) +  4>(x,y,t). 

These disturbances, denoted by <^>, are long enough for the flow to be considered 

uniform and parallel to the axis everywhere, yet short enough so that along-stream 

changes in the flow can be ignored over a wavelength. The latter assumption allows 

any disturbance to be expressed as a superposition of plane waves of the form 

j>{x,y,t)  =  <f>(y)eik^ 

where the symbol <j> is now taken to denote only the meridional variation of the distur- 

bance. The dispersion relation is found by substituting the perturbed streamfunction 

into the potential vorticity equation (2.4) 

(*- + Uo±) ^ +  ^  +   (d-id-^i - !+*?+)   =  0, (2.21) 
[dt+   °dx)      *        dxdy   +   \dx   dy        8y   dx   ) ' V       ; 

and linearizing. For the geophysical shear flows considered here, the phase speed of a 

disturbance is determined by the well-known eigenvalue problem (Rossby, 1939; Kuo, 

1949): 

(Oft) - «0  (4* - *V)    +      iß    ~    Uyy)<f>    =      0 (2.22) 

<f> =  0 at y =  ±Z- 

By considering this eigenvalue equation, we will attempt to classify examples 

of alternate flows as supercritical and subcritical with respect to the speed of the 

appropriate long-wavelength wave mode. Because of the application to jet splitting, 

the wave of interest is the second cross-channel mode, the varicose wave. 

Much of the previous work on this eigenvalue equation has focused on finding the 

unstable modes with complex eigenvalues c. Howard (1964) showed that on the /- 

plane the number of unstable modes is equal to the number of inflection points in the 

36 



flow. A neutral wave is found by setting U — c = 0 at the inflection point in (2.22). 

The eigenfunction (f> is non-singular and the mode is marginally stable. These neutral 

waves are contiguous to a set of unstable modes with complex eigenvalue c. Howard's 

(1961) semicircle theorem, extended to the /?-plane by Pedlosky (1964), states that 

for an arbitrary unstable velocity profile, U(y), the complex eigenvalues lie within a 

semicircle 

ITT i    TT        \1 i        2  s"     (     (TT TT        \\ i      Py^rnax        t/mt'nj (cr - -(Umin + Umaxfj    + c2 <   (-(Umax - Umin)j    + 
2k2 

in the complex c-plane, where cr < Umax (Pedlosky, 1964). 

In addition to these unstable modes and the neutral mode, there may be a count- 

able number of non-singular stable modes. These propagating modes will be most 

important in a hydraulics interpretation of shear flows. Pedlosky (1964) showed 

that there is no mode with c, greater than Umax, and modes with cr in the range 

Umin ^ Cr < Umax must either be unstable, stable and moving with a phase speed 

equal to the velocity at the critical latitude, or singular at the critical latitude. Thus, 

any stable, non-singular mode has c < Umin (other than the finite number of neu- 

tral modes). These modes, which are essentially Rossby waves modified by shear (or 

Rayleigh shear waves modified by /?), have been studied by Drazin et al. (1982) in 

the asymptotic limit of large ß. In the limit as ß —> oo, the waves become the classic 

Rossby waves of which there can be an infinite number of cross-channel modes. In the 

present study we are interested in ß = 0(1) which makes an analytic investigation of 

the waves more difficult. 

For a given flow, the propagation of disturbances with wavenumber k is found 

by solving (2.22) numerically. The eigenvalues are found by discretizing (2.22) using 

center differencing, and then solving the the linear algebra problem numerically (Yanai 

and Nitta, 1968). The domain is divided into M + 1 grid-points (labeled i) with 

spacing dy — 2L/M. The second derivatives in (2.22) are expressed in center 

differences at the interior points, and the boundary conditions, <f>   =   0 are used at 
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the end points. This turns (2.22) into a linear homogeneous system 

(B-cD)P  =  0, 

or 

(D-'B - cSiJ)P  =  0, (2.23) 

where 

B(i,j)   =   iß - U{y(i))m)6id + U(y(i))D(i,j); 

D(i,j)   =   J-J (Sitj+i - 2Sitj + 8ii:i^) - k28ij; 

P(i)   =   <f>(y(i)). 

The eigenvalues of this matrix (2.23) are easily found using standard routines and 

this method is used later in the chapter when specific velocity profiles are considered. 

This section and the preceding one have discussed how to classify flows as sub- 

critical or supercritical based on their wave properties and the amount of momentum 

flux associated with them. A supercritical flow has less momentum flux than its 

subcritical alternate state and a supercritical flow does not support infinitesimal sta- 

tionary waves. Following an argument by Benjamin (1962) these two properties are 

now shown to be equivalent. Using variational calculus in §2.3 we established that 

a solution to the dynamical equation (2.6) subject to the boundary conditions (2.7) 

was an extremal of the integral S. A solution is an actual minimum of S if the second 

variation S2S is positive (Courant and Hilbert, 1953). To prove this the expression 

S[ij>]   =  J s(ipy,tp,y)dy' 

is expanded by Taylor's theorem 

S[r/>+ e<l>}  =  Sty] + s2s 
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where 

^=^[^4/(0^    +    2; d2s    ,d(f>        d2s .d<j) 
<f>ir + hr^f  W dipdißy   dy        dip2  dy' 

The first order term in the Taylor expansion has vanished because S is stationary for 

dB 
dip the solution ip. Using the definition of S (2.20) with Q = ^ and integrating by parts 

yields 

2 J  V« «-/l|*-gk 
Clearly S2S is zero for critical flow because the integrand is just the wave equation 

for a A; = 0 wave with zero phase speed. If the flow is subcritical, then stationary 

waves of finite wavenumber k are possible and the integrand is equal to —k2<j>2 which 

is clearly negative. A minimum of S can only occurs when the flow is supercritical 

and 82S is positive. 

2.5    Multiple solutions for general Q(i[>) 

According to Armi (1989), a uniform eastward flow on the ß plane may be either 

subcritical or supercritical as waves can be advected downstream or propagate up- 

stream depending on the strength of ß. On the other hand, westward flow can not 

be subcritical because both the ß effect and advection cause waves to propagate to 

the west. If the flow has some shear associated with it this argument is not rigorous 

because the propagation speeds of the waves depends on the shear and, in fact, the 

strength of the shear determines whether a particular mode exists at all. Also, the 

mere existence of some flows that allow stationary waves and some that do not is not 

enough to show that alternate states are possible. True alternate flows must have 

the same energy (or, equivalently, potential vorticity) so that they may pass from 

one to the other in a conservative manner. The purpose of this section is to explore 

which shear flows have alternate states by determining which Q(i(>) relations allow 

non-unique solutions to (2.6) with a given ambient potential vorticity f(y). 

In a bounded domain such as the channel with the boundary conditions (2.7), 
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equation (2.6) is a two point boundary value problem and there have been several 

theorems, dating back to Picard (1893), which determine when such systems have 

unique solutions (Bailey et al. (1968) and Bernfeld and Lakshmikanthan (1974)). If 

H is a constant (A), (2.6) is linear and the problem is easily solved and, as §2.6 

will demonstrate, a linear Q(tß) does not allow alternate states. Depending on the 

sign of A, the solution is either exponentially decaying, or a sinusoidal free mode, the 

wavenumber of which is determined by A. 

If Q(tp) is nonlinear, the structure of ip(y) is no longer simply sinusoidal, but 

instead has a local wavenumber which depends on ^?, which is a function of if). 

Unlike the linear problem, the nonlinear problem may have several different solutions 

with different meridional structures. According to Bailey et al. (1968), if Q(i>) is 

continuous and smooth (^ is continuous) and ^§ is positive for all if), then the 

solution to (2.6, 2.7) is unique. If ^| is bounded from below by -K then the system 

has a unique solution if 

VJC   <    ^- (2-24) 

This places a bound on the size of the domain that may have unique solutions and 

if L exceeds this bound, it is possible, although not guaranteed, that non-unique 

solutions exist. The actual number of solutions will depend on the other parameters 

of the problem, i.e. ß and ipw (which determines the net transport of the flow). 

Formal proofs of this theorem may be found in Bailey and Waltman (1966) and 

Lettenmeyer (1944). The idea behind the proofs is that solutions to a nonlinear 

equation, bound in the manner described, will have a wavy structure with a minimum 

wavelength set by the bound of 43.. Assume a function ifi satisfies one boundary 

condition and the equation (2.6). If the domain is large enough, the fluctuations may 

allow ij) several ways to meet the boundary condition at the opposite edge. However, 

if the domain is smaller than the minimum wavelength then it is too small for there 

to be several paths to the opposite side. 

The bounds which guarantee uniqueness are the same as the bounds found by 

Arnol'd in his two theorems on stability of a fluid in a bounded domain (Arnol'd 
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(1966) as reported in Mclntyre and Shepherd,(1987) and Ripa (1992)). ArnoPd's 

first theorem guarantees stability if j£ is positive everywhere and his second theorem 

guarantees stability if ^ < — (j^j ; thus when the domain is small enough so 

that the flow is stable in the sense of Arnol'd, solutions are unique. 

If K exceeds the limit set in (2.24) the equation may have non-unique solutions. 

Perov (1962), explored the special case where f(y) = xjjw = Q(Q) = 0. When ^| 

is negative, then (2.6) has solutions ^(y) that oscillate in y with a local wavenumber 

V- M' ^ ^e domain is smaller than half of the minimum wavelength only the trivial 

solution is possible. As the domain size increases, more solutions are added with 

more "nodal" points in the domain. There are In non-trivial solutions where n is the 

greatest integer that satisfies 

n  <   —^—. (2.25) 
7T 

A consideration of specific Q(i(>) relations that violate (2.24) allows an explicit 

demonstration of when alternate flows are possible. Multiple solutions to the two 

point boundary value problem (2.6) are found with a shooting method. For simplicity 

the ambient potential vorticity gradient will be taken to be linear, ■£■ = ß, in all of 

the examples. The domain is divided into M + 1 grid-points (labeled i) with spacing 

dy = 2L/M. Starting at the southern boundary, we use the appropriate boundary 

condition for if) and an estimate for u = — ^ to begin the integration northward. The 

integration is carried out using a three-point difference for the second derivative. At 

the northern boundary the discrepancy between V'Af+i a^d — V>0 is used to re-estimate 

the velocity at the southern boundary. The process is iterated until the discrepancy at 

the northern boundary is reduced to within a predetermined tolerance. This method 

leaves us with a set of zonal velocities at the southern boundary ?%=_£ = us which 

correspond to different solutions ij>(y) that satisfy (2.6). 
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2.6     Linear Q(?p) 

Q(ip) is commonly chosen to be linear everywhere which makes the problem of finding 

the flow structure analytically tractable. For instance, Fofonoff (1954) solved for the 

free inertial modes of a closed rectangular basin using a linear Q(ifr)- In addition, 

scatter plots of Q vs. ip in the atmosphere show that a nearly linear relationship 

between Q and ip often holds (Butchart et al, 1989). In a blocking episode, the 

relationship is piecewise linear and the interior of the block has a steeper slope than 

the exterior. However, we will demonstrate that a linear Q(ip) is not an appropriate 

model for multiple equilibria. Consider the equation 

0 + ßv = A* 

with the antisymmetric channel boundary conditions (eq. 2.7). If A is positive, the 

unique solution is 

ip  =  (u0L - ipw) a .      - u0y 
smhA   il 

where 

u0 =  -ß/A. (2.26) 

If A is negative, the number of antisymmetric solutions depends on its value. The 

streamfunction is given by 

sin f(—A)~2y) 
iß  =  (u0L - i/>w) .    > t   ,   - u0y. (2.27) 

sin ((—A)~2L) 

If (—A) 2 ^ ^, where n is an integer, then there is a unique solution that satisfies the 

boundary conditions. However, if (—A)? = ^, there are no solutions if if>w ^ +u0L. 

For the special case when ifiw = +u0L the amplitude of the free, sinusoidal mode is 

unspecified by the boundary conditions and an infinite number of solutions satisfy 
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the equation. These solutions are of the form 

/ A  •   n7r 
ip  =  Asm—y  - u0y. 

Tollmein (1935) investigated the stability properties of this sinusoidal flow,  and 

showed that the flow is stable when the domain half width L is less than 

Note that this is the same cut-off width for the flow to be unique. 
(-*)*' 

The infinite number of modes correspond to Rossby waves of arbitrary amplitude 

which satisfy the full perturbation equation (2.21) because the nonlinear terms vanish. 

These waves are not alternates to each other or the uniform flow (A   =   0) because 

the energy associated with them depends on the amplitude A. Also, the momentum 

flux 

f fu2        o   i * , \ j ß2L5(3 + 4TT
2
) 

J {T ~ M + y   ^) y =   —3^— 
is independent of the amplitude of these waves. According to the classification given 

in §2.3, these waves can not be alternates since they all have the same momentum 

flux. Of course, this restriction on linear Q(iJ>) does not apply to flows with piecewise 

linear Q(ip) which do have alternates states (Pratt, 1989 ; Haynes et al, 1993) since 

a nonlinearity arises at the discontinuities of potential vorticity. 

2.7    Q    =    — sin -0 

Consider the nonlinear potential vorticity distribution in a flat-bottomed channel 

d2V> 
dy2 + ßy =  -sinV> (2.28) 

with Dirichlet boundary conditions (eq. 2.7). The derivative ^ is bounded from 

above and below by ±1. If L < | a solution is unique and, according to Arnol'd's 

theorem, also stable. Because — sin^ is an odd function, if ip(y) is a solution then 

~i>(—y) is also. Therefore the unique solution iß must also be antisymmetric. As the 

domain width increases beyond the critical width of L   —   |, multiple solutions are 
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possible. 

2.7.1     Zero Transport 

First consider the special case of flow with no net transport (if>w — 0) on the /-plane. 

According to Perov's theorem (2.25), when the domain has a half-width of L = 4 

there are four non-trivial solutions. These are determined by the shooting method 

with M = 48 and are shown in Figure 2-1. Two of the flows are antisymmetric and 

two are symmetric about the midpoint of the channel. In addition, there is a trivial 

solution. 

If the ambient potential vorticity gradient changes (as it would if a fluid parcel 

passes over an isolated ridge) while the Q(iJ>) relation is maintained, then the velocity 

structure is forced to change. For each value of ß, the shooting method determines all 

the flows that satisfy (2.28) and characterizes them in terms of «s, the velocity at the 

southern channel wall. Solutions are summarized by figure 2-2. Each point that lies 

along the curves corresponds to a solution of the potential vorticity equation (2.28) 

and the velocity profiles of several solutions are indicated in the figure. Negative 

values of ß correspond to negative values of the scaling velocity U and the curves 

show the symmetry (ß,us) -> (-/?, -«,), i.e. solutions corresponding to points in the 

lower left quadrant are the same as the ones represented by points in the upper right 

quadrant. 

Every solution ip(y) that lies along the S-shaped curve is antisymmetric, so the 

velocity profiles u(y) are symmetric. The curve includes the trivial solution at the 

origin and extends to infinity as ß —► oo, implying that at least one antisymmetric 

solution ip exists for all values of ß. The curve has two turning points at ß = ±0.103 

and when ß is between these critical values three antisymmetric solutions exist. At the 

point P a symmetry-breaking bifurcation occurs as another solution curve bifurcates 

off of the S-shaped curve. Points on this curve represent asymmetric solutions if). 

This curve has two turning points at ß = ±0.39. Beyond this value of ß the only 

solution is an antisymmetric ^>. 

The critical latitudes of the marginally unstable modes are the latitudes at which 
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-£- vanishes. In this example these are determined by 

dQ dQ dtp 

dy dtp dy 

=   (cos^)«. 

With a net eastward transport of zero, u must vanish somewhere in the flow or be 

identically zero everywhere in the flow. Other critical latitudes may occur whenever 

tp — |. The presence of these latitudes suggest that unstable modes may be found 

for this flow and indeed, because the half-width of the channel is L = 4, we are 

well beyond the necessary condition for instability which, for the present problem, is 

L > |. The dispersion relations for four symmetric velocity profiles (on the «S-shaped 

curve) are described in figure 2-3. The eigenvalue equation (2.22) has been solved 

for these velocity profiles using the matrix method described in §2.4 using M = 48 

points. The method finds all of the normal modes and a set of other eigenvalues 

which represent the discretized version of the continuous spectrum. No information 

on this continuous spectrum (whose eigenfunctions have discontinuous derivatives at 

the critical latitude) will be presented. 

In figure 2-3 we see that all of the solutions are unstable to the sinuous mode. 

For profile a the unstable modes lie within two bands. The longer waves have a 

positive real part, so U — cr vanishes along the wall. For the shorter waves U — <v 

vanishes in the center region of the flow. Both of these bands correspond to symmetric 

eigenfunctions <p which are the sinuous mode. Profile d also has two bands of unstable 

sinuous waves. The critical latitude for the longer waves is again at the edges of the 

flow but because the velocity profile is reversed, cv is negative for the longer waves 

and the longest waves have stabilized with c < Umin. The band of shorter waves has 

positive phase speeds and vanishingly small growth rates. This band is quite narrow, 

and for smaller values of ß on the outer branch it disappears. Solutions b and c have 

a single band of unstable sinuous waves which are contiguous to long stable sinuous 

waves with westward phase speeds. 

The dispersion diagrams for the second gravest mode, the varicose wave, are also 
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shown in figure 2-3. No varicose wave exists for any of the solutions along the outer 

branches (i.e. profiles a and d). At the point of the curve where two symmetric 

solutions merge, profile c, a long (k — 0) stationary (c = 0) wave emerges, as expected 

by Gill, 1977. This wave is stable, but only marginally so; on the other side of the 

turning point the mode becomes unstable. All solutions on the center branch are 

unstable to both the sinuous and varicose waves with the exception, of course, of the 

null solution at ß = 0. The dispersion diagram for profile b is typical. The longest 

sinuous waves are stable and the longest varicose waves are unstable. The two bands 

overlap at moderate wavelengths and as k increases further only the sinuous mode is 

unstable. The largest growth rate for the varicose mode is smaller than the largest 

growth rate of the sinuous wave. 

In this example it appears that the multiplicity of symmetric solutions is linked 

to the instability of the symmetric (varicose) mode. This can be seen more clearly 

by considering the other parameter in this problem: L, the half-width of the channel. 

Since Q and ^ were non-dimensionalized, L is a measure of the instability according 

to Arnol'd's theorem. The solution curves at a fixed ß, i.e. ß = 0.05, with variable 

L show that the instability is tied to the existence of multiple equilibria (fig. 2-4). 

For small L, the flow is unique and stable (a) . As the half-width increases beyond 

I, = | a pitchfork bifurcation occurs as two other solution branches emerge (b and 

d). The center branch represents symmetric velocity profiles which are unstable to 

the long sinuous wave (c), the symmetry-breaking mode. The two outer branches 

represent stable, asymmetric velocity profile, which do not support a sinuous mode. 

Note that the bifurcation occurs right at Arnol'd's necessary condition for instability, 

L = |. As the half-width increases beyond L = 3.5, two more solution branches 

emerge (f and g) with symmetric velocity profiles. All of these symmetric solutions 

(e,f and g) are unstable to the sinuous mode. Only the center solution (f) is also 

unstable to the long varicose mode, and the outer solutions do not support a varicose 

mode. 

For the special case of ß = 0 (fig. 2-5) the first set of multiple equilibria emerge 

via a pitchfork bifurcation at L  =   f again. Because ß  —  0 the center branch only 

46 



represents the null solution, which of course is stable. The increase in channel width 

beyond L = | does allow the gravest wave to satisfy the boundary conditions and 

so a stable normal mode does exist for L > |. The second set emerges at L = 7r, 

where Perov's theorem predicts the formation of more solutions. These new solutions 

are symmetric and unstable to the sinuous mode alone (just as e and g were in the 

previous plot). The pitchfork bifurcation is structurally unstable which means that 

any non-zero value of ß leads to a structural change of the bifurcation to that of figure 

2-4. It is clear that the onset of each instability corresponds to a bifurcation of solution 

branches and that Arnol'd's necessary condition for instability is the minimum value 

of L at which these bifurcations may take place. As ß increases, multiple equilibria 

occur for larger values of L, the exact value of which depends on ß. 

As in many other nonlinear systems (Arnol'd, 1992) the existence of an unstable 

equilibrium depends on the multiplicity of solutions to the governing equation. In 

fact, if we consider the solution surface us(ß, L) for the symmetric velocity profiles 

(fig. 2-6) we see that the surface is folded; the projection of the fold onto the (/?, L) 

plane is a cusped region within which three solutions are possible. The entire center 

branch is unstable with the exception, of course, of the null solution. This structure 

of the solution surface is ubiquitous in systems described by catastrophe theory, and a 

further discussion of what such a solution surface might indicate about the barotropic 

instability problem will be postponed until the discussion section of this chapter. 

2.7.2     Eastward Transport 

Because we are primarily interested in eastward jets, we continue this analysis for 

streamfunctions with the boundary condition ipw = 1. This addition of a net east- 

ward flow with v, = ^ does not simply shift the solutions of the previous example 

by ü. That kind of Galilean shift would cause Q(ij>) to have a different functional 

form. Instead we keep Q = — sin iß and search for the new streamfunctions that 

satisfy (2.6). To focus on symmetric jets and their alternates, only the antisymmet- 

ric streamfunctions are examined which allows us to use uc, the center velocity to 

characterize the flow as a function of the external parameters ß and L. Because the 
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folded catastrophe surface is structurally stable, a similar solution surface exists for 

this example (figure 2-7). When L exceeds ir, the surface corresponding to symmetric 

velocity profiles will fold and three solutions are possible for a range of ß. The exact 

range differs from the previous example because of the change in transport. 

As an example, only the solutions for a channel half-width of L = 4 is examined 

in detail. The solution curve (figure 2-8) is again 5-shaped (the choice of the center 

velocity, uc, instead of us has reversed the S) with turning points at ß = 0.07 and 

ß = 0.26. For 0 < ß < 0.26, an eastward jet (a) exists with westward return flow 

along the channel walls. These jets are unstable with respect to the sinuous mode 

and the unstable portion of the spectrum is a single band of moderate wavelengths. 

The long sinuous waves are stable and propagate westward. No normal varicose mode 

exists for any of the jets along this outer branch. The other outer branch, extending 

from ß — 0.07 to infinity corresponds to a "split jet" with a westward center and 

eastward jets along each channel wall. This flow is also unstable to a sinuous mode 

and, again, no varicose mode is present. In the range of 0.07 < ß < 0.20, the center 

branch represents flows with weak westward centers and eastward jets along the walls. 

They are unstable to both the sinuous and varicose waves. The sinuous waves are 

stable at long wavelengths, but in general have a larger growth rate than the varicose 

wave. All of these properties are analogous to the preceding example with tpw = 0, 

and do not fit into hydraulics interpretation. 

On the other hand, when 0.2 < ß < 0.26, the flows on the center branch are 

entirely eastward and have small shear. These flows have no critical latitudes and 

so are stable even though they lie on the center branch. However, since they do not 

have the full range of Q = [—1,1] they are not true alternates to the solutions on the 

outer branches. A pair of stable sinuous waves and a pair of stable varicose waves 

with c < Umin exist for these flows. These waves are contiguous to the unstable waves 

for ß < 0.2. Each pair has a mode that can propagate upstream (c < 0) and one that 

propagates with the flow (c > 0), which fits the definition of sub-critical hydraulic 

flow given in §2.4. 

The other hallmark of subcritical flow is that the group velocity of the stationary 
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waves is directed downstream, i.e. it is positive. By considering the dispersion relation 

for ß  =   0.21 this is clearly true since 

cg   =  c +  — 
dc 

dk 

and, where c = 0 for the varicose mode, ^ is positive. 

As discussed in §2.4, the flux of momentum may also be used to classify alternate 

flows because sub-critical flows have more momentum flux than their alternates. Fig- 

ure (2-9) shows that at any given ß the flow on the center branch carries more 

momentum flux than either flow on the outer branches. Solutions on the center 

branch are classified as subcritical, and a transition to a solution on either outer 

branch would result in a loss of momentum flux. Thus the stable flows on the center 

branch may be classified as subcritical. 

2.8     Transitions 

Can one of the zonal flows described in the preceding subsection undergo a transition 

to one of its alternates? This question is considered more carefully in Chapter 3, 

where time-dependent adjustments are carried out in a quasi-geostrophic numerical 

model. In this section we suggest two differing scenarios based on the steady, long- 

wave theory for how an isolated topographic feature may cause a zonal flow to pass 

to an alternate state. One scenario is based on a hydraulics interpretation of the 

solution curve. The other is based on an interpretation of how the flow will evolve 

due to instabilities if Q(ip) is maintained from its upstream structure. 

We assume that the functional form of the topography is separable, i.e. 

Vb  = g(x)h(y), 

where g{x) —► 0 as x —>■ ±oo, and that g(x = 0) is unity.   Other than this, the 
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topography may take any shape; however, for simplicity, h(y) is assumed to be linear 

Hy) = ßr(-L + y). 

Other choices for this meridional function will alter quantitative features of the sug- 

gested transition, such as the exact value of the critical slope or the latitude of the 

flow as it passes over the topography, but the qualitative nature of the transition will 

be the same. The actual shape of this topography is shown in figure (2-10). While 

it may appear unusual, it should be remembered that other choices for T]B will still 

allow alternate states, since their existence depends only on L and not on the spe- 

cific functional form of the ambient potential vorticity gradient. Although this 7]B 

is, frankly, chosen for simplicity, it could be argued that the nose-shaped topogra- 

phy qualitatively resembles the South East Newfoundland Ridge near where the Gulf 

Stream bifurcates (fig. 1-1). 

It is also assumed that the topography and the flow vary more slowly in the in- 

direction than in the ^/-direction, so that V2ip is approximated by |^. With this 

choice of topography, the potential vorticity equation is simply 

^ + (ß + ßrg)y - ßrgL = <?(*), 

iß  =  ±1   at   y  =  qF4. 

The long-wave character of the topography makes the z-dependence parametric and 

is simply denoted by the slowly varying function g. The flow field over the topography 

is determined by solving this ordinary differential equation in y for each value of g 

between zero and unity. As a fluid parcel passes over the ridge, it experiences a change 

in the ambient potential vorticity which causes iß(y) to vary. Of course, this equation 

is just the potential vorticity equation considered in the preceding subsection with 

the addition of a constant vorticity term which arises from the stretching over the 

topography.   The solution curve in figure 2-8 may then be used to predict how a 
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non-unique zonal flow passes over topography. 

Suppose that the background potential vorticity gradient is ß = 0.21. The three 

possible alternate states corresponding to flow far away from the topography He at 

the intersection of the solution curve and the line ß — 0.21 (fig. 2-8). Suppose 

that the upstream flow is represented by the center alternate flow which is stable and 

subcritical (velocity profile b). As the ridge is approached the Q(tp) relationship must 

stay the same as its upstream form, so the flow at any ambient vorticity gradient is 

determined by the solution curve. As the effective ß increases, the velocity structure 

adjusts itself causing the center velocity of the jet to increase. If the maximum 

ambient potential vorticity gradient is less than 0.26, then, when the crest of the 

ridge is met, uc has reached its maximum; passing down the other side of the ridge 

causes the flow field to return along the curve to its upstream value. 

The difference in interpretation enters if the effective ß exceeds the critical value 

of ß = 0.26. First consider a hydraulics interpretation. Although some of the flows 

are unstable, the hydraulics interpretation will assume that the long - wave hydraulics 

character will be present despite smaller wavelength instabilities. If ßx = 0.05, i.e. 

so that the total ambient potential vorticity is equal to the value at the turning 

point of the solution curve (fig. 2-8), then the flow can pass from one branch of the 

curve to the other. For instance, if the upstream flow is profile (a) then uc decreases 

continuously as the topography is passed and reaches the value on the center branch 

far downstream. In open channel hydraulics this transition is unstable as waves are 

directed to the ridge from the upstream and downstream which causes energy to be 

concentrated at the critical point. This results in a hydraulics jump which dissipates 

the energy and allows the flow to pass to a new state with a different Q{ij>) (since the 

jump is non-conservative). 

In the present case, the upstream flow does not support varicose waves so a con- 

vergence of energy does not take place and the flow could possibly pass smoothly 

from the narrow flow (a) to the broader flow (b). If ß is small enough, the flow down- 

stream of the topography may be split. An example of this type of flow is shown in 

figure (2-11) for g(x) — e~\** /.   Upstream of the topography is a single eastward 
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jet. The background potential vorticity gradient is taken to be ß = 0.08, so that the 

jet is a narrow jet with westward return flow along the channel walls. As the topo- 

graphic slope increases, some of the streamlines are blocked forming a recirculation. 

Downstream of the topographic center the eastward jet continues to widen forming a 

stagnation point on the eastern slope. Further east, as the potential vorticity gradient 

decreases below 0.2, the flow is split into two eastward jets. Far downstream, where ß 

returns to its upstream value of 0.08, the flow is decidedly split, with a recirculation in 

the interior. This transition bears a qualitative resemblance to the splitting observed 

in the Gulf Stream (Clarke et al, 1980) and to blocking in the atmosphere (Shutts, 

1986). A defect in this interpretation is that east of the stagnation point some of the 

streamlines originate from the east where Q(ip) is determined by different dynamics 

than in the west; the assumption that Q(tß) has the same functional form there may 

not be good. However, since the range of Q is the same up- and downstream, perhaps 

a transition such as fig. 2-11 qualitatively takes place as the contours "fold" into their 

steady-state position after some time-dependent adjustment. 

The analogue to a control is difficult to imagine for the stable subcritical flow (b) 

since it does not contain all of the Q values as the other states that exist for ßx = 0. 

Perhaps some other alternate state can be constructed using the original range of Q to 

fill in the regions not covered by the streamlines extending from upstream but there 

is no a priori way of determining how to do this within the steady-state long wave 

theory. A more serious defect is the lack of a varicose mode on the outer branches 

of the solution curve. The absence of this wave allows no passage of information 

downstream from the topography and thus no mechanism to establish a supercritical 

state downstream. Nevertheless, we presume for the sake of argument that some kind 

of transition from the subcritical flow (b) to a supercritical flow can take place which 

conserves Q(ip) on all streamlines that originate from upstream and that momentum 

is lost at the transition. The flow should exhibit upstream influence and adjust to a 

new flow that has the value of ßx at the turning point of whatever new solution curve 

that it lies upon. 

The examination of the wave properties in the previous subsections indicate that 

52 



the existence of multiple states has more to do with the instability of the flow rather 

than hydraulics. This interpretation leads to a different prediction of transitions 

from one state to the other. The flow should maintain its original Q(ip) relationship 

on all streamlines that originate from upstream. For instance, if ß = 0.21 and the 

upstream flow is stable (b), then a localized change in the effective ß will cause stable 

waves to be excited in the lee. However, a transition to another parallel flow is 

not expected and no upstream influence should be present. If the flow is unstable, 

then the perturbations excited by the topography will grow. If the instability is 

localized so that the upstream conditions are unaffected by it, then the original Q(if>) 

must still be maintained on all streamlines that originate from upstream despite the 

instability. The localized instability will cause the zonal flow to equilibrate into a new 

form with the same Q{if>). This new shape is not necessarily one of the zonal flows 

depicted in figure 2-8, since the long-wave behavior is not assumed to dominate the 

instability process (as it is assumed to dominate a hydraulic transition). Of course, if 

the perturbation excites modes that are globally unstable then the upstream structure 

will change and the entire flow field will evolve into a new equilibrated state, or a 

turbulent flow. 

2.9    Discussion 

The previous work of Pratt (1989), Woods (1993), and Haynes et al. (1993) on 

hydraulic shear flows examined specific examples of alternate states with a given 

potential vorticity - streamfunction relation, but left unanswered the question of 

which Q(ip) relations may undergo hydraulic transitions. Here, by considering when 

the potential vorticity equation may have non-unique solutions, a necessary condition 

for alternate states was established namely that ^| is negative, and bounded from 

above by 

% < -(£)"■ *"> 
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This type of analysis may easily carry over to other fluid systems that undergo 

hydraulic transitions, the dynamics of which are governed by equations similar to 

(2.6). A list of such problems including gas flow from a nozzle, open channel hydraulics, 

stratified hydraulics and vortex breakdown in tubes has been compiled by Binnie 

(1949) and more recently by Benjamin (1984). The present idea of finding a con- 

dition for multiple solutions like condition (2.29) has not been exploited before, al- 

though recently Beran and Culick (1992) considered an example of non-uniqueness 

for the vortex breakdown problem and found a solution curve of symmetric solutions 

that is S-shaped and similar to (2-8). However, they did not find a condition for 

non-uniqueness, nor was the connection to hydraulics or instabilities made. 

It is interesting to note that the violation of (2.29) is the same condition that 

Arnol'd (1966) found for nonlinear stability. In fact, the non-unique solutions for 

linear Q(iß) in a channel (§2.6) are a common example of Arnol'd's theorem (e.g. 

Mclntyre and Shepherd (1987) §6 ex. 1). The onset of instability and the existence 

of multiple equilibria were shown to coincide for the barotropic instability problem 

considered here. This places the instability problem into a large set of nonlinear 

systems described by bifurcation theory. In fact, this has been suggested by Ukhovskii 

and Iudovich (1963) and Benjamin (1976,1978a) for the stability problem of a viscous 

fluid. Benjamin was not able to explicitly show the bifurcation for a specific example 

of the instability problem. However, he was able to find laboratory evidence for a 

bifurcation of equilibrium states similar to the branching diagrams shown here (e.g. 

figures 3 and 4 of Benjamin, 1978b). Based on a weakly nonlinear solution and 

numerical calculations, Helfrich and Pedlosky (1994) have recently found evidence for 

a bifurcation at the onset of baroclinic instability (their figure 14). 

Because the instability problem considered is explainable by bifurcation theory, 

several interesting questions and conjectures are suggested. For instance, the solution 

surfaces found in catastrophe theory are universal, meaning that they can always be 

mapped to a few elementary forms whose shape depends on the number of free param- 

eters (Thorn, 1975). Although a specific example is considered here, Q = — sin^, 

other flows with different Q(if>) should behave the same way as ß and L are varied. 
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This also suggests that a sufficient condition for instability could perhaps be found, 

based on fixing the location of the flow on the universal solution surface. 

As more parameters are added to the problem the complexity of the solution 

surface increases, yet Thorn was able to show that when the number of parameters 

was increased to four there were only seven elementary catastrophes and all other 

solution surfaces can be mapped into these. Therefore, more complicated flows such 

as stratified flows should still fall within bifurcation theory, but bifurcations also 

take place along other axes in the parameter space, corresponding to the additional 

mechanisms for instability (i.e. baroclinic instabilities). 

An accurate estimate of ^ is important for the present theory on multiple alternate 

states, and many other theories of nonlinear planetary flow. For example, Marshall 

and Marshall (1992) noted that poor model resolution could lead to inaccurate esti- 

mates of •£, and thus poor zonal penetration scales of jets. Weakly nonlinear theories 

such as Malguzzi and Malanotte-Rizzoli (1984) and Helfrich and Pedlosky (1993) rely 

on the even more delicate second derivative jß. These derivatives may be estimated 

from scatter plots of iß vs. Q, although the relative paucity of oceanic compared to 

atmospheric data makes such estimates difficult. Despite these difficulties the present 

work is expected to apply to realistic atmospheric and oceanic flows because they are 

known to be unstable. 

The examples in this chapter, constructed from artificial Q(ip) relations, bear 

a qualitative resemblance to blocking and jet splitting. However, the analogy with 

hydraulic systems is not complete because of dispersion, instability, and the absence of 

a varicose mode for the narrow eastward jet. These complications suggest considering 

the time-dependent evolution of the jets in §2.7.2 to consider whether transitions 

among alternate states take place and whether these are due to hydraulic behavior 

or the equilibration of localized instabilities. 
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Figure 2-1: The four non-trivial solutions to (2.13) on the /-plane with zero transport. 

The half-width of the channel is L  =  4. 
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-4-2      0      2 

Figure 2-2: Solution curves showing us as a function of ß for the zero transport flow. 
The S-shaped curve corresponds to symmetric velocity profiles (and antisymmetric 
streamfunctions). The solutions that correspond to points on the closed path are 
asymmetric. The velocity profiles u(y) on the right correspond the points labeled on 
the curve. 
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Figure 2-3: Dispersion diagrams for four symmetric velocity profiles labeled on the 
solution curve. The first column is the velocity profiles. The second column is the 
real part of the phase speed c, as a function of the wavenumber A;. The solid line 
denotes the velocity Umin. The third column is the growth rate as a function of 
k. ß = 0.05(a), 0.05(6),0.103(c), 0.05(d). Solution b is the only profile indicated 
which supports bands of both sinuous and varicose modes. Solution c supports a long 

(k w 0) stationary (c w 0) which is varicose. 
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show the growth rate as a function of wavenumber k, for the velocity profiles on the 
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0        0.5        1 

Figure 2-5: Solution curves u, as a function of L for ß = 0.0. The lower panels show 
the growth rate as a function of wavenumber k for the two velocity profiles indicated 
above. 
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Figure 2-6: Solution surface u.(ß,L) for the symmetric velocity profiles. The 
projection of the surface onto the parameter plane (ß, L) forms a cusp, within which 

there are three solutions. 
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Figure 2-7: Solution surface «c(/3, L) for the symmetric velocity profiles with eastward 

transport. 

62 



u(y) c£k) 
0.2 

0.1 

0 

kc(k) 

2 

a   0 

-2 

2 

0 

-2 A »v. 
-4-2 0 2 0 0.5 1 0 0.5 1 

2 

b   0 

-2 

0.2 

0.1 

0 
-4-2 0 2 0 0.5 1 0 0.5 1 

2 2 
0.2 

c  0 0 0.1 

-2 -2 
0 r\ 

-4-2 0 2 0 0.5 1 0 0.5 1 

0.2 
2 2 A 

d   0 V 0 

-2 

\ 0.1 I -? 
0 

-4-2 0 2 0 0.5 1 0 0.5 1 

Figure 2-8: Solution curves showing u(y = 0) as a function of ß for the symmetric 
velocity profile with ipw = 1. Also included are the dispersion diagrams for the four 
velocity profiles, ß = 0.21(a), 0.21(6), 0.19(c), 0.08(d). 
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Figure 2-9: The momentum flux S (defined in §2.3) as a function of ß for the three 
branches of the solution curve. 
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Figure 2-10: A schematic of topography with a slowly varying linear meridional slope. 
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xo 

Figure 2-11: A contour plot of the streamfunction if> for the hydraulic transition over 
a meridionally antisymmetric topography. The contour interval is 0.2. 
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Chapter 3 

Time-dependent Alternate Flows 

3.1    Introduction 

Atmospheric blocking and the splitting of oceanic jets, such as the Gulf Stream are 

characterized by their unusual persistence in time and by the longitudinal extent of 

the double-jet system. Rex (1950) states that a block is characterized by a transition 

from a single jet to a double-jet system which must remain split over 45° in longitude 

and must persist for at least ten days. The branching of the Gulf Stream is clearly 

persistent in time, and the split is permanent in space; the waters never re-merge to 

form a single current. While these features are persistent, observations also stress the 

importance of time-dependent forcing in the maintenance of the block. Green (1977) 

and Illari and Marshall (1983) established that a particular block was maintained 

by the convergence of vorticity fluxes that arise from transient eddies. Krauss et 

al. (1990) remarked that the branching of the Gulf Stream was marked by intense 

eddy activity, even though the current always bifurcates near 40°iV,44oW. These 

observations suggest considering the effect of time-dependent forcing and whether, as 

a result of such forcing, transitions between zonally-uniform equilibrium states can 

take place. 

The theories on equilibrium states also provide compelling reasons to consider the 

effects of time-dependence. Previous authors (Pratt, 1989 and Woods, 1993) have 

interpreted the existence of multiple flows with the same Q(tß) relationship as an 
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indication that the flow behaves as a hydraulic system if the multiple states can be 

connected by smoothly varying the ambient potential vorticity gradient. This sug- 

gests that hydraulic behavior may be possible in planetary scale flows. In particular, 

critical control could be established if Rossby waves can propagate upstream and if 

these waves are of sufficient amplitude to cause a permanent change in the upstream 

flow. Experiments in other hydraulic systems, such as those considered by Long 

(1954) or Pratt (1983), have demonstrated that a transition between two alternate 

states is established when a disturbance of sufficient amplitude is introduced. How- 

ever, a careful consideration of the wave properties in chapter 2 indicates that the 

multiple solutions of the quasi-geostrophic potential vorticity equation are not clear 

examples of hydraulic systems, but rather they correspond to stable and unstable 

equilibria. If the equilibrium is unstable, then the disturbance may cause the flow to 

equilibrate to some new, stable equilibrium as the instability mechanism saturates, or 

the flow may break apart into a turbulent system if saturation does not occur. These 

two scenarios, hydraulics and instabilities, must be examined with a time-dependent 

numerical calculation to determine whether transitions between zonally uniform flows 

can take place, and whether they do so as the result of a stable, hydraulic adjustment 

or due to the equilibration of an unstable state. 

Haynes et al. (1993) considered the establishment of hydraulically controlled flows 

in a single layer subject to the constraints of quasi-geostrophy. A zonally uniform flow 

in a channel was perturbed by the sudden introduction of a topographic shelf which 

varies in width along the channel. They chose the shelf to be a single height so that 

after the disturbance the potential vorticity is piecewise constant, with a value of TJB 

over the shelf, and zero where there is no topography. The two regions are separated 

by a front of potential vorticity upon which vorticity waves can travel. Of course, after 

this disturbance, the flow is no longer in steady state and the resulting adjustment 

exhibited hydraulic behavior including upstream influence and bores when the width 

of the shelf extended beyond a critical value determined by steady state theory. The 

purpose of this chapter is to test whether such hydraulic behavior is possible when 

the potential vorticity gradient of the zonal flow is not concentrated in a single front 

68 



but rather is smoothly distributed. In particular, by allowing the potential vorticity 

gradient to vary it may pass through zero, a condition which allows the flow to be 

unstable. 

As in Haynes et al. (1993), the numerical experiments in this chapter have been 

designed to search for hydraulic behavior. We consider an adjustment problem similar 

in spirit to their work and the work of Long (1954) and Pratt (1983). Initially the 

flow is one of the symmetric, zonally-uniform flows with Q = — sin^> on the ß 

plane. The flow has a net eastward transport, and is described by the solution curve 

in §2.7.2, which is reproduced here (figure 3-1). At t = 0 an obstacle, localized in 

a;, is introduced and the flow is forced to adjust. As in Haynes et al. (1993), the 

sudden introduction of the topography introduces potential vorticity into the flow 

causing Q to be disturbed from its equilibrium position along contours of — sin^>. 

In addition, the obstacle has a linear meridional slope, ßr, which locally alters the 

propagation characteristics of the vorticity waves by changing the ambient potential 

vorticity gradient from ß to ß + ß?. The variable topographic slope may cause 

hydraulic effects by bringing the speed of long waves to zero or it may alter the 

stability characteristics of the waves. 

The adjustment calculations are carried out in a numerical model described in 

section 3.2. In the sections following this description, the four zonal flows labeled in 

figure 3-1 are considered. The initial conditions are perturbed by several topographies 

which alter the total ambient potential vorticity gradient as indicated by the figure. 

To examine the possible upstream influence, the momentum flux is measured up- 

and downstream of the topography. In addition, scatter plots of Q(iJ>) are monitored 

throughout the adjustment to steady state. 

Transitions between alternate states are observed in the adjustment problems. If 

the flow is subcritical and stable, then hydraulic control is established when ß + ßx 

exceeds the critical value, ßc determined by the steady state theory. Downstream of 

the control an unstable narrow front of potential vorticity forms, which is analogous 

to supercritical hydraulic flow. Hydraulic behavior is not present when the initial flow 

is unstable to the varicose mode or when the varicose mode is not present. However, 
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transitions to other zonal flows still take place when the flow is locally unstable, or 

when disturbed by a large topographic feature. 

3.2    Numerical Model 

The initial value problems are solved numerically using a pseudo-spectral model of 

the quasi-geostrophic vorticity equation for a single layer on the ß plane: 

£W  + ß4^>  + J{i>^2TJ>)  + J(TP,VB)  =  vVV (3.1) 
at ox 

The code typically uses 256 x 48 grid points with Ax = 0.59 and Ay = 0.166, so that 

the total zonal extent of the domain is 150 non-dimensional units, and the channel 

is 8 units wide. The time step was At = 0.02 and v = 4.0e"7. The pseudo-spectral 

model can adequately resolve features with fewer gridpoints than a finite difference 

model. This feature makes the method a natural choice for this problem because the 

transitions between zonal flows may be abrupt. For instance, in Pratt (1983), the 

hydraulic jumps took place over only a few gridpoints and he used a Lax-Wendroff 

method to ensure that conservation laws held over shock regions. Transitions in the 

present numerical experiments will also take place over several gridpoints, and as the 

resolution was increased the transitions occur over smaller zonal distances. 

If the disturbance is localized, the boundary conditions are independent of time 

so that 

V> = ±ißw   at   y = ^L. 

By taking a constant velocity field (ub = -$±) out of the flow, the total streamfunc- 

tion may be expressed as a sum of the background field and of sin ly terms 

Mv/2L 

iß  =   -uby +     J2 
l=ir/2L 

2n(N-l)/L. 

£      (Ak,ie
ik* + *) 

fc=0 

sin (iy) 

where Lx is the zonal extent of the domain, M is the number of gridpoints in y and N 
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is the number of gridpoints in x. With this expansion the spectral form of equation 

(3.1) is 

-(k2 + l2)^  +   (ikß - ikub(k
2 + l2)  +  u(k2 + l2f)Ak,i  + Nk>l   =  0 

where Nkj is simply the (k, I) Fourier component of the nonlinear terms that arise 

from the Jacobian terms in the original equation. The linear constant coefficient 

terms are integrated exactly to yield 

dt 

where 

|- (Afc,,e
rt)   +  N^e"  = 0 (3.2) 

<r = -i (ßk/(k2 + I2) - ubk) -v(k2 + I2)' 

The Rossby wave dispersion relation and the exponential decay due to the friction 

are readily apparent. Exact integration is preferred because it allows the numerical 

stability limit to be increased (Canuto et al. 1987). Equation 3.2 is then integrated 

forward in time with a leapfrog scheme 

-<rAt Akti(t + At) = Akj(t - At)e~2°M + 2AtNk,i(t)e 

The nonlinear term, Nkj is calculated by passing to real space, performing the 

multiplications and then passing back to Fourier space. The aliasing inherent in the 

pseudo-spectral transform is removed by a truncation technique which is described 

in Canuto et al. (1987). For both the x and y spectra of Fourier coefficients, M 

(or N) components rather than M components are used, where M > ZM/2. The 

first M coefficients are identical to the original Fourier coefficients, and the rest of 

the coefficients, corresponding to high wavenumbers, are padded with zeros. This 

Fourier series is transformed into real space where it is multiplied by another, simi- 

larly treated, real function. The product is then transformed back to Fourier space, 

using all of the M components. This spectrum is then truncated to the first M 

components.  With this method, the aliasing has been removed, but any enstrophy 
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that has cascaded to wavenumbers beyond the highest wavenumber, (corresponding 

to M), is lost. 

Because of dispersion, different length scales propagate up- and downstream and 

the physical problem is not periodic in x. To prevent "wrap-around" from one edge 

of the channel to the other, absorbing regions are used which gradually damp the 

amplitude of the solution over forty grid points. The amplitude of the damping is 

chosen by trial and error to minimize reflections off of the sponge into the domain of 

interest. Typically, the streamfunction in the absorbing region is multiplied by the 

factor G = esp(-(0.005(40 - i))2), where i denotes the number of the gridpoint. 

This gives a value of unity for i = 40 at the interior boundary and a value of 0.96 for 

i = 1 at the edge of the computational domain. 

The right hand side of 3.1 is a "friction" which is included to dissipate the enstro- 

phy that has cascaded down to the spectral resolution of the model. Because it is 

a higher order friction, it should have little effect on the low-wavenumber dynamics 

of interest. However, a drawback of the biharmonic friction, as opposed to a Lapla- 

cian friction, is that it may actually intensify vorticity maxima that arise during the 

evolution. This problem is helped by increasing the spatial resolution of the model 

and it is monitored by keeping track of histograms of Q during the evolution. In the 

few places where this error has not been completely eliminated it appears that the 

enhanced maxima do not determine the overall dynamics of the flow. 

The obstacle itself has a meridional slope that slowly varies from zero at the far 

ends of the channel to a maximum at the midpoint. This causes the ambient potential 

vorticity gradient to vary from its background value of ß to ß + ßT- The functional 

form of the topography is 

VB  = ßr(y + L)exp(-(x/5ir)2). 

The zonal extent of the topography is chosen to be quite long so that the change in 

ambient potential vorticity gradient is gradual. 
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3.3     Broad eastward flow 

When ß = 0.21 and the channel half-width is L — 4, there are three symmetric 

solutions to the potential vorticity equation with Q = —siniß. We first consider an 

initial condition, depicted in figure 3-2, which lies on the center branch of the solution 

curve. The flow is nearly uniform and stable and because the flow is completely 

eastward, upstream is well-defined as the west (left) of the channel. According to 

the dispersion relation (figure 3-2), this flow is subcritical with respect to both the 

sinuous and varicose modes because long waves can propagate upstream. The sinuous 

mode has a stationary wavelength of 2n/k fa 7, and the varicose mode's stationary 

wavelength is 27r/fc « 11. Both of these waves have a group velocity directed 

downstream and so they can both form lee waves. Since the stationary wavelengths 

are smaller than the scale of the topography, these lee waves are only very weakly 

excited. 

Figure 3-3 depicts the evolution of the potential vorticity when ßx = 0.03, a 

value forty percent less than the critical gradient. In this example, the domain has 

been elongated to Lx = 300 to follow the disturbances further before they pass out of 

the computational domain. At t — 100, the initially zonal flow has deflected south- 

ward over the upstream face of the ridge, and northward over the downstream face. 

Subsequently, this pattern breaks into two isolated dipoles, one that propagates up- 

stream and another traveling downstream. Because the dipoles are weakly nonlinear, 

they are difficult to see in the contours of potential vorticity. Therefore, at t = 800, 

contours of the streamfunction are superimposed on top of the potential vorticity field 

to highlight the dipoles. The upstream dipole is centered at approximately X = —79 

and the downstream dipole is centered at X = +68. As these dipoles pass out of the 

computational domain, at t = 1700, the flow is left in a steady state that appears 

symmetric in X about the topography. 

Measurements of the Q(ip) relationship and the momentum flux show that the flow 

is indeed symmetric, and no hydraulic control has been established. Scatter diagram 

of Q vs. iß are shown in figure 3-4. At t = 0, Q is scattered about the functional form 
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established upstream. As the flow equilibrates, the potential vorticity collapses back 

onto a single curve which is the original upstream function Q — —sinip. At t = 1700 

and t = 2000, there is a small range of points clustered near Q - 0.5, for which 

Q is nearly constant with i/>. These points lie right over the peak of the topography 

where the fluid has come from close to the wall. Despite these minor differences, the 

flow has generally maintained its original Q(if>) form as it passes over the topography 

even though the zonal velocity field has changed structure there. 

Measurements of M, the flux of momentum defined in chapter 2, are made with 

time at points up- and downstream of the topography (figure 3-5). As the dipoles 

pass by the measurement points at t - 300, M increases and then returns to near 

its original value both up- and downstream. Both positions show a slight loss of 

the momentum flux and surprisingly the loss is slightly greater in the upstream flow. 

Still, the difference between the two values is less than one-half of one percent of 

the original momentum flux. Thus, there has been no upstream influence due to the 

topography and there is no topographic drag on the flow. The final steady state is 

subcritical everywhere in the flow because the topographic slope never exceeds the 

critical value. 

The presence of the weakly nonlinear dipoles makes this an appropriate place to 

mention a few results from previous work on weakly nonlinear waves. This theory 

was originally developed by Malguzzi and Malanotte-Rizzoli (1984) and extended to 

include time-dependence by Helfrich and Pedlosky (1993). In the latter work, the 

authors consider the evolution of a solitary wave in a flow that is near the stability 

threshold. They find that the solitary wave itself is often unstable, even when the flow 

lies just on the stable side of this threshold. The time-dependence of solitary waves in 

flows that are well-within the stable regime are also discussed briefly in their Appendix 

and since the flow considered here is firmly stable, these results are of immediate 

interest. Their calculations are carried out for a two-layer fluid, but nothing in the 

asymptotic calculations depends on the baroclinicity of the flow, so their results may 

be simplified to the one layer case. They find that a weakly nonlinear wave in a stable 

flow obeys the classic KdV equation and the solitary wave moves, in a non-translating 
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frame, with a constant speed c® + u. The speed CQ is the speed of the second cross- 

stream mode with infinite wavelength. Because the flow is stable, two of these modes 

are possible with different values of c0. For the present flow, the dispersion diagram 

(3-2) shows that the infinitely long varicose modes have c = +0.044 and c = —0.120. 

Since the dipoles travel with speeds of 

cd » +0.075   and   cd « -0.09, 

the speeds of each of the dipoles in the appropriately translating frames is u Pü +0.03. 

The theoretical value of u is difficult to calculate because it depends on the shear of 

the basic flow and the amplitude and meridional structure of the solitary wave and 

is given by equation A4 of HP. However, their discussion, based partly on work by 

Haines and Malanotte-Rizzoli (1991), shows that a small amplitude solitary wave in 

a stable, widening flow will have a positive value of u. 

The adjustment over the topography is quite different when ßr exceeds the critical 

value of 0.05. Figure 3-6 shows the evolution of Q when ß? = 0.06, a value which is 

twenty percent above the critical slope. Because the initial perturbation due to the 

topography is so large, a large amplitude response is quickly seen in the flow. By 

t = 100, the Q = 0.8 contour is beginning to pinch together, near X = 10. Since a 

small amount of friction is present, this contour can form a closed loop, as can be seen 

at t = 150. As this potential vorticity contour and other, nearby contours "fold-up," 

they are forced northward to the channel wall, widening the flow on the upstream 

face of the topography (i.e. negative X). The arrow above the t = 150 panel denotes 

this "fold-up." This pushes the potential vorticity that was originally along the wall 

(Q = _5i7j,(_.0iu) ~ 0.84) downstream of the topography so that it must pull down 

from the wall. A small pocket of this fluid can be seen on the downstream face of the 

topography, near X = 10 in the t — 150 frame. A similar effect also begins to happen 

along the southern wall (2 = 425). At later times, more fluid is forced along the 

walls because of changes upstream, causing the downstream region of constant Q to 

lengthen. The center contours of potential vorticity are squeezed together, forming a 
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front of potential vorticity, and consequently a strong eastward flow. Because of this 

effect, upstream and downstream influence occur simultaneously. The integration is 

halted as the front reaches the sponge region. 

Clearly the adjustment bears a qualitative resemblance to a hydraulic control 

because of the broad sub-critical flow upstream and a swift, narrow flow downstream. 

To examine this resemblance more carefully, the flux of momentum was measured just 

upstream of the topography at X - -8, and downstream at X - +20 (figure 3-7). 

At t w 300, when the potential vorticity contours are squeezed together downstream, 

the downstream momentum flux drops, and then remains below the upstream value 

for the rest of the integration. Approximately ten percent of the momentum flux is 

lost due to topographic drag. 

In classical free-surface hydraulics, the establishment of a hydraulic control causes 

a decrease in the transport. In the present application, the streamfunction along the 

walls must be fixed because the disturbance is localized in X, so a similar reduction 

in transport can not take place. Instead, when ßT exceeds the critical value for a 

given Q(j>) relation, the function Q(tp) itself must change as the system equilibrates 

to allow the flow to be on another curve representing steady solutions. Because of the 

meandering downstream flow and other changes in the upstream flow, a steady state 

has not been reached and Q(i/>) at every longitude shows some scatter. Unfortunately 

then, it is not possible to say anything definitive about how the Q(iß) relationship 

has changed, or even if it has the same form up- and downstream of the transition. 

Instead of looking at the entire Q(ip) field as before, figure 3-8 shows a comparison 

of the original Q(^) function and scatter plots of Q(ip) for two longitudes, one in 

the wide, upstream flow and the other in the narrow front. The potential vorticity 

distributions are similar at these two longitudes except for the constant Q regions that 

lie north and south of the front in the downstream flow. These regions arise from 

the fluid that was squeezed from along the walls to downstream of the transition 

where it spreads to fill the nearly homogeneous pools. This homogenization does 

not necessarily occur as a result of friction in the model, since the region is filled 

with fluid that originates near the boundary and always has nearly constant Q. The 
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scatter plots show that there is a plateau of constant Q located upstream as well, at 

Q « 0.4. Figure (3-6) shows that this pool of potential vorticity is homogenized; the 

small scale features in the Q field are lost by t — 975. 

Because the propagation characteristics of long waves are so important in hydraulics, 

a dispersion relationship for the downstream flow is considered. A velocity profile 

taken from the jet is shown in figure 3-9 along with the phase speed and growth rates 

of the normal modes for this jet. The phase speed for the varicose wave is positive 

and so the zonal flow downstream of the topography is supercritical, albeit unstable 

in the range k = 0 to k = 0.9. The sinuous mode is stable and westward for wavenum- 

bers less than 0.65. The fastest growing sinuous wave has a wavelength of 9 in the 

non-dimensional model units and the eastward jet in the model does have a strong 

meander pattern at this wavelength. 

Because of the momentum loss across the transition and the change in the wave 

properties downstream of the transition, the final state is consistent with a hydraulic 

control. In the theory of hydraulics, this sub- to supercritical transition is primarily 

an inertia! phenomenon where frictional effects are unimportant. To verify that the 

control seen in this numerical run is independent of the level of friction, a series of 

experiments were conducted in which the frictional coefficient takes on a range of 

values. In figure (3-10), the positions of the sub- to supercritical front and the super- 

to subcritical front are plotted as a function of the magnitude of v. The position of 

the transitions are, to a first approximation, independent of friction until u is an order 

of magnitude larger than that the value used in the reported numerical runs. At this 

large value of u, the front does not even form, presumably because the large friction 

at high wavenumbers prevents the abrupt transitions from taking place. Reducing u 

by an order of magnitude leads to no significant change in the positions of the fronts, 

although the potential vorticity field is much noiser at the resolution of the grid. 

This transition did not arise from any kind of instability of the original stable, 

zonal flow because the local increase in the topographic gradient only made dQ/dy 

more positive. However, a decrease in the topographic gradient could cause the flow 

to be locally unstable and it is this case that will be considered next. If ß? is less than 
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-0.01, then the flow enters the unstable portion of this solution branch which causes 

a localized region of unstable flow. As an example, the evolution for ßT = -0.03 is 

shown in figure 3-11. Initially, the flow widens over the topography, and in particular 

the Q = 0 contour sharply deflects to the north. By i = 200, this contour has begun 

to "roll-up," forming an elongated eddy. A close-up of this region is shown in figure 

3-12 at t = 240. Note that the pool of nearly homogeneous potential vorticity arises 

from the breaking of the highly convoluted Q = -0.05 contour that extends from 

upstream. To the south and east of this pool are sharp fronts of potential vorticity 

which have been swept around from the north. The western edge of the eddy is 

determined by a stagnation point at the maximum topographic gradient (located at 

X = 0) in the center of the channel where the Q = -0.01 contour extends to the 

northeast and southeast. In the interior of the eddy the flow is zonal with reversed 

flow. In an ideal model, with infinite resolution, all of the interior Q contours would 

smoothly connect to the upstream flow (although they would be highly convoluted). 

By this time, the instability has reached its maximum meridional amplitude. At later 

times (figure 3-11), the eddy elongates as more fluid is swept into the interior and the 

eastern front of potential vorticity advances with speed c = 7.7 in the non-dimensional 

units. The western edge of the eddy continues to be the stagnation point fixed at 

X - 0. Upstream of the topography the interior potential vorticity contours have 

narrowed, presumably as fluid is entrained into the recirculation zone. The integration 

is halted as the front of potential vorticity nears the downstream sponge region. The 

final state (t = 480) shows two distinct zonal flows on the up- and downstream faces 

of the topography. Upstream, the flow is similar to the original broad zonal flow. 

Downstream, the eastward flow is intensified along the northern wall, and the flow 

is westward in the interior. This zonal flow bears a qualitative resemblance to the 

"split" jet belonging to the lower branch of the solution curve (3-1). 

A consideration of the Q(ip) scatter plots 3-13 at longitudes up- and downstream 

of the maximum topographic gradient as well as at X = 0, shows that the functional 

relationship between Q and ij> is maintained along all streamlines that pass over the 

topography, despite the 0(1) difference in the structure. Curiously, for positive values 
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of potential vorticity, the function Q(ip) has shifted slightly from its original, upstream 

form. This occurs as the interior fluid is swept northward and is then entrained into 

the recirculating region which displaces the fluid originally along the wall to the west. 

In fact, a "trough," marked by the arrows, is visibly moving upstream along the 

northern wall. This wave produces "upstream influence" which slightly changes the 

Q(tp) function. A wave is also present along the southern wall, which produces a 

similar effect, albeit much smaller since the topographic disturbance is much smaller 

along this wall. This scenario is consistent with critical control. Exceptional points, 

with differing Q(ip) functions, also lie in the the "roll-up" region of reversed flow and 

these points form a "loop" in the Q(i>) plane. The loop in the Q(r{>) plane indicates 

that the flow in this region has not yet reached a steady state. Presumably a new 

Q(ip) relationship is being established in the recirculation as a result of the stirring 

of potential vorticity, and as the dissipation slowly acts on the flow. The close-up 

of the eddy (figure 3-12) shows that the tongue of potential vorticity has spread out 

near X = 15, Y — 0, presumably because of the viscosity. 

Because the artificial viscosity appears to be playing some role in the equilibra- 

tion of the flow, a discussion of the quantitative effects of the viscosity is warranted. 

The steady-state theory of chapter 2 considered alternate states in an inviscid, un- 

forced system and ideally a numerical model that considered the transition between 

such flows would also be inviscid. In such an inviscid model, enstrophy would be con- 

served, even as it cascades to smaller scales. Unfortunately, this is impossible, because 

the finite resolution of a numerical model causes problems as enstrophy cascades to 

scales smaller than the scale of the grid. However, with a de-aliasing procedure, and 

adequate spatial resolution, enstrophy is very nearly conserved (Orszag, 1971). 

In the present model, a small biharmonic friction was included in the model in 

order to keep the potential vorticity field smooth at the scale of the grid. How does the 

inclusion of viscosity alter the conservation of total enstrophy? In many of the model 

runs of this chapter, this question can not be addressed, because the sponge regions, 

which are necessary to prevent wrap-around, will destroy enstrophy. In the present 

example, the signal does not reach the wrap-around position, and so the sponges can 
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be removed, allowing conservation of enstrophy to be considered. Even with the small 

viscosity included, the fractional change in the total enstrophy is O(10"3) during the 

course of the model run. This indicates that the dynamics are conservative, and the 

artificial viscosity only serves to smooth out the field. 

Since the conservation of total enstrophy is a global measure, a more useful mea- 

sure of the viscosity might be to consider how well potential vorticity is conserved 

following a parcel as it moves through the evolving Eulerian field. Unfortunately, 

this Lagrangian calculation is fraught with difficulties, due to the loss of information 

caused by the inevitable truncation of the Eulerian field at the resolution of the nu- 

merical model (Haidvogel, 1982). Despite these difficulties, Lozier and Riser (1989) 

have considered Lagrangian trajectories in an Eulerian model. However, the potential 

vorticity along such a trajectory varied by as much as 20%. Such variations do not 

necessarily invalidate their Lagrangian information. Since the potential vorticity field 

can contain small scales, a small error in the location of a parcel may lead to large 

errors in the measurement of its potential vorticity. However, these errors do present 

a problem when conservation of potential vorticity is the issue, as it is here. For 

instance, Hua (1994) advocates the use of Lagrangian potential vorticity conserva- 

tion as an independent method for checking the consistency of a numerical model. 

By comparing model runs with different horizontal and vertical resolution, he con- 

cludes that adequate resolution is achieved when the error in the potential vorticity 

is approximately 25%. These variations in potential vorticity reported by Lozier and 

Riser (1989) and Hua (1994) show the difficulty in using Lagrangian information to 

measure conservation of potential vorticity. 

However, since I am interested in determining the effect of the artificial viscosity 

term on the dynamics, I will compare potential vorticity conservation for the model 

run presented earlier (fig. 3-11 with a new run with no artificial viscosity present. 

This run also conserves total enstrophy; the fractional change is O(10~3), similar to 

the run with viscosity. The potential vorticity field for this run is shown in figure 3-14. 

The filaments of potential vorticity are more connected in the "roll-up" region, and 

the tongue of potential vorticity is less diffuse. However, the most obvious difference 
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between the two fields, is the ragged structure at the scale of the grid when the 

viscosity is not present to smooth out the field. 

The parcel trajectories are determined by the kinematic equations 

—j  = Ui(xi,t), (3.3) 

where üi(xi,t) is the velocity field at the position of the ith parcel. Equation (3.3) is 

solved with a Ath order Runge-Kutta scheme, where the values of U{ are calculated by 

summing up their Fourier series. This method is much slower than interpolating the 

velocity field from its grid point values, but it is a more accurate method. Using this 

procedure, individual parcels are followed as the Eulerian velocity field evolves. Figure 

3-15 shows the "spaghetti diagram" from 24 parcels which began at two lines across 

the channel, at X = -50 and X = 0. These parcels are for the case with artificial 

viscosity, and show little qualitative difference from the case with no viscosity. The 

parcels clearly separate as the "roll-up" develops, and some parcels are caught in this 

interior recirculation. 

Figure 3-16 compares potential vorticity conservation for the two runs for the 

parcels which began at X = 0, and it is clear that potential vorticity is better con- 

served when the small viscosity is present to keep the potential vorticity filaments 

smooth and connected. The maximum loss of potential vorticity for this case is 29%, 

while in the absence of viscosity the parcels completely lose track of their original 

values of potential vorticity. 

Given that total enstrophy is conserved and that potential vorticity is better 

conserved in the presence of the small viscosity, I conclude that the artificial viscosity 

is serving its purpose in keeping the potential vorticity field smooth at the scale of 

the grid. The equilibration of the flow appears to be due to the adjustment from the 

time-dependent terms, and not the dissipation. 
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3.4     Split flow 

The development of a hydraulic control in the stable, subcritical flow is interesting, 

but how robust is the control if the initial flow is unstable? After all, much of the 

center branch of the solution curve is unstable. Do these flows produce hydraulic 

control? To examine this question, a slightly split flow with ß = 0.19 and shown 

in figure 3-17 was chosen for the initial condition. The long, varicose waves are 

marginally unstable and the sinuous waves are unstable at moderate wavelengths. 

Because the flow has a westward center, some of the streamlines originate from X = 

-f oo and upstream is no longer well defined. However, the initial value problem is still 

well-posed, and figure 3-18 shows the evolution when ßT = 0.03, less than half of the 

value needed to reach the critical point on figure 3-1. Note that the zonal length of the 

domain is twice that of the previous runs, but Ax, and therefore At and v remain the 

same. This unstable flow adjusts quite differently than the similar stable adjustment 

depicted in 3-3, although the localized topographic perturbation is identical. Instead, 

the northern potential vorticity contours are pushed northward to the wall, and then 

roll up into a reversed zonal flow near the center (X = 0) of the topography (t = 225). 

Until this point, the adjustment looks very similar to the locally unstable example 

in figure 3-11. However in the present example, the background initial flow is more 

unstable than the localized region over the topography. Thus, the disturbance excites 

unstable, periodic waves. The final state, halted as the signal reached the eastern 

sponge layer, shows that the initial disturbance has excited a sinuous wave, with a 

wavenumber of k « 0.45, which is near the fastest growing sinuous wave of the initial 

flow. Experiments with larger values of ßr show similar evolution patterns, and 

hydraulic control is not established. Because the entire region off of the topography 

is more unstable then the region of the initial disturbance, the plane wave instability 

is excited and then dominates the evolution. The instantaneous field at t = 350 

shows a difference between east and west of the maximum topographic slope. This 

difference is due to the different dispersion characteristics of the waves. During the 

initial adjustment, long waves propagate westward and short waves propagate to the 
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east. However, since a periodic instability is being excited, off of the topography 

the final state will be a global instability with a wavelength determined by the global 

dynamics. The periodic instability is suppressed in the present model by the absorbing 

boundary conditions. 

By reversing the topographic slope, the most unstable region is then localized at 

the topographic perturbation. The adjustment (figure 3-19) then follows the now- 

familiar pattern of "roll-up" at the topography, which strengthens the westward cen- 

ter. An intense meridional jet forms at the eastern edge of the "roll-up" connecting 

the new zonal flow to the original system. The western edge of this interior recircu- 

lation is determined by a stagnation point, fixed at X = 0. The southern potential 

vorticity contours pass between the southern wall and the recirculation. This flow 

is subject to a short-wavelength instability that causes the southern jet to meander 

with a zonal wavelength of 6 non-dimensional units. 

3.5     Swift eastward flow 

We next consider the ß = 0.21 flow with a strong eastward center and westward return 

flow along the channel wall (figure 3-20). This zonal jet lies along the outer branch of 

the solution curve described in chapter 2 and accordingly does not have any kind of 

varicose mode, stable or unstable. However, the flow does have two critical latitudes 

where dQ/dy vanishes; they are located at Y = ±2.25, the latitudes at which the 

zonal velocity vanishes. There is a band of unstable, sinuous waves for which the 

dispersion diagrams are shown in figure 3-20. The shortest marginally unstable wave, 

with k fa 0.65, has the quantity U — c vanishing at the critical latitude and so 

c = 0 at the short wave cutoff. The latitudes at which U — <v vanishes for the other 

unstable waves lies between the critical latitude and the wall; thus, their phase speeds 

are always westward. The longest marginally unstable wave, with k « 0.45 has c 

equal to the velocity at the wall; all longer waves are stable, westward-propagating 

waves. The fastest growing wave has a non-dimensional wavelength of 2n/0A7 ~ 13.3 

and an exponential growth rate of 0.019. 
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The adjustment that occurs when ßT = 0.03 is depicted in figure 3-21 which 

shows the potential vorticity contours at various times of the evolution. At t = 0, the 

introduction of the topography causes the formerly steady Q contours to shift from 

their initial zonal configuration. An anomalous, closed patch of potential vorticity 

is introduced by the topography in the interior of the domain. This patch of high 

potential vorticity is advected towards the west along the channel wall and towards 

the east by the core of the jet. By t = 210, the northern patch of potential vorticity 

is stretched so thin that it breaks and an equilibrium state is eventually reached. The 

anomalous potential vorticity is advected out of the domain, and the steady state Q 

contours have widened slightly over the topography to compensate for the increased 

ambient potential vorticity gradient. 

Scatter plots of potential vorticity versus streamfunction (figure 3-22) show that 

the adjustment causes the points to collapse along a single line. The final plot also 

includes a Hue of the Q(rj>) function for the original upstream flow. Clearly the points 

for the equilibrium state are indistinguishable from the Q = - sin rj, fine. When the 

topographic slope lies below the critical value, the flow equilibrates to have the same 

functional relationship between the two fields as the upstream flow has. 

Although Q{i>) is the same everywhere in the flow, the flow field is not quite 

symmetric in x, due to the presence of a large amplitude sinuous wave which arises 

from the instability of the flow. Initially, this mode is not excited by the topography, 

and so no instability is present. As the signal reaches the sponge region a small 

reflection takes place and an unstable sinuous wave with a wavelength ofl« 13, i.e. 

near the fastest growing wave, is excited. Although this wave is artificial, since it is 

due to the sponge, the model run is continued because sinuous modes are a dominant 

feature of geophysical jets. This wave grows and potential vorticity is cast out to 

the north and south of the eastward jet. It appears that this instability does not 

destroy the overall structure of the eastward jet, so that potential vorticity contours 

are unbroken from upstream; however, the equilibration of this unstable wave is not 

really adequately resolved in this model. The initial zonal jet was also perturbed by 

a periodic, unstable, sinuous wave with a finer resolution model and the instability 
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still did not disrupt the eastward jet because the critical latitudes for the unstable 

flow lie outside of the core of that jet. 

The adjustment of the potential vorticity contours when ßr = 0.06 is shown in 

figure 3-23. When ßT exceeds the critical value of ßT = 0.05 by only this small 

amount, the adjustment that takes place is very similar to the previous run. As 

before, the initial maximum of potential vorticity is stretched out by advection, and 

the contours widen over the topography to compensate for the topographic stretching. 

In addition, the Q(tf>) relationship is maintained on all streamlines that originate 

from upstream (figure 3-24). However, because ßx exceeds the critical value for this 

potential vorticity function, the functional relationship can not be maintained at the 

crest of the ridge. Instead, a small, closed region of the anomalous potential vorticity 

is trapped over the topography at the northern channel wall. This patch of potential 

vorticity accounts for the points of potential vorticity that abruptly rise from the 

Q — —sintj) curve in the final scatter plots. 

Because tj> varies slowly in this region, the zonal flow is nearly zero there. Figure 

3-25 shows the velocity field right at the crest of the ridge (X = 0), and at points east 

and west of the ridge. The velocity fields are nearly identical away from the ridge, 

with a strong eastward core and westward flow along the walls. At the ridge crest, the 

flow has clearly slowed down due to blocking of some streamlines by the topography. 

The dispersion relationship for the velocity field at X = 0 and ß = 0.21 + 0.06 shows 

that only a sinuous mode is present for this flow (figure 3-25) and thus no transition to 

a state that is subcritical with a varicose mode has been made. Unlike open channel 

flow, no hydraulic jump forms in the narrow, swift current as the topographic gradient 

is raised beyond the critical value. However, a hydraulic jump is the result of the 

convergence of energy that arises when the upstream flow has waves propagating 

downstream and the downstream flow allows upstream propagation. In this case, the 

upstream flow does not allow a varicose wave of any kind and so the hydraulic jump 

is not necessary. Instead, a local response is felt both upstream and downstream of 

the topography. This is consistent with a feature of this dispersive flow mentioned in 

Chapter 2. While subcritical flows may have stationary waves of finite wavelength, 
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their alternates only have c = 0 when k is imaginary; thus, the response of the flow 

to a perturbation is exponentially decaying and nothing resembling a hydraulic jump 

takes place. 

The cusp-shaped solution curve, discussed in chapter 2, suggested that if the 

original solution lay on the outer branch and ßx was varied so that this branch no 

longer existed, then the solution would jump to the other outer branch. However, 

in catastrophe theory, for which this jumping behavior occurs, the center branch 

is always unstable, and it is the instability at the cusp which causes the flow to 

equilibrate to the new, stable state. In this case, the center branch is stable just on 

the other side of the cusp, and so no such jump takes place (as seen in the previous 

run). The topographic gradient must be raised all the way to ßx = 0.09, nearly 

twice the value of the critical gradient, before this kind of response is seen (3-26). 

With the large topography, the flow widens over the topography enough so that by 

t = 360 the inner Q = ±0.84 contours reach the wall and block all but the inner 

fluid (with —0.84 < Q < 0.84 ) from passing over the topography. This reduced 

range of Q abruptly widens and fills the width of the domain for a small region in 

X that is connected to the original flow by intense meridional jets. The fluid is 

squeezed into a narrow, northern jet that passes between the northern channel wall 

and the recirculation, and a broader, southern flow between the southern wall and 

the recirculation. As in the previous two runs, some waves reach the eastern sponge 

region and an unstable sinuous mode is excited; by t — 640, the potential vorticity to 

the north of the eastern zonal jet has been cast off. However, this process plays little 

role in the evolution of the split flow since the instability does not break up any of 

the contours that pass through the localized region to the west of this zonal flow. At 

later times, the localized region widens as the downstream meridional front expands 

eastward, as more of the fluid from the upstream jet is entrained in the recirculation. 

The western front slowly propagates westward until it reaches the longitude at which 

ßx is equal to the critical value ßc — ß = 0.05. At this point, the growth of the region 

halts and the flow has achieved a new steady state. The integration has been carried 

out to t = 4000, with no significant change in the final structure. The split flow does 
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not expand to fill the eastern portion of the channel, but halts when the western 

front reaches its equilibrium position which prevents more fluid from being entrained. 

Throughout the slow growth of the localized flow, the Q{$) relationship maintains 

its original functional form (3-27), with the exception of some of the interior points 

which belong to filaments of the initial potential vorticity disturbance. This trapped 

anomaly is initially consistent with a modon-like solution, which has dQ/dif> more 

negative in the interior of the closed contours. However, with time, friction tends 

to destroy the potential vorticity gradient, and the slope in the Q - $ plane of the 

interior points is nearly constant. 

When ßr exceeds the critical value, the behavior of this narrow, eastward jet 

is quite different than the two predictions in chapter 2. If this jet behaved as a 

supercritical, hydraulic flow, then presumably a westward-propagating dissipative 

jump would form at the topography. As the jump passes out of the domain of interest, 

the final state would resemble figure 3-6: a subcritical flow passing to supercritical 

flow in the lee of the topography. However, this jet does not ever form a dissipative, 

propagating front with subcritical flow in the lee. On the other hand, if the system 

behaved as a typical catastrophic system, then the flow would undergo an abrupt 

transition when ßT reached its critical value, passing to the only solution possible, 

the westward flow lying on the other outer branch of the solution curve. However, in a 

typical catastrophic system, the critical value of ßT occurs when a stable equilibrium 

and unstable equilibrium merge. It is the passage to an unstable state that causes 

the system to amplify the disturbance until a new, stable equilibrium is reached. 

In the present example, the merger at ßT = 0.05 occurs between two stable states 

and so there is no mechanism to cause an 0(1) change in the flow. Only when 

ßT = 0.09, nearly twice as large as the critical value, is the disturbance introduced 

by the topography large enough to cause the flow to pass to the new zonal flow. 
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3.6     Swift westward flow 

It is natural to consider an initial flow lying on the other outer solution branch, since 

it merges with an unstable equilibrium at the critical value of ß + ßT = 0.07. The 

velocity profile with ß = 0.08, shown in figure 3-28, was considered to test this idea. 

The flow still has a net non-dimensional transport of T = +2, but the eastward 

flow is split into two jets along the walls, with a westward flow in the center. The 

entire zonal flow-field is unstable to the sinuous mode in the range k = 0 to k = 0.5. 

The fastest growing wave has an e-folding time scale of 5.5 and a wavelength of 

L = 16.5, which is very close to the topographic length scale of 5TT. The evolution for 

ßT = -0.001, which is ninety percent below the critical value, shows that the initial 

jets rapidly break down (figure 3-29). By t = 50, a meandering motion is set up 

over the topography and the trough-to-trough distance for this meander is precisely 

the wavelength of the most unstable mode. Very quickly, this motion amplifies and 

expands east and west of the topography. By t = 80, the potential vorticity in the 

two eastward jets has rolled up into closed eddies trapped between the westward flow 

and the channel walls. Unfortunately, because the sinuous mode is unstable to very 

long wavelengths, it is not practical to use a longer topography to avoid this unstable 

sinuous mode. No further tests with larger topographic gradients are warranted since 

the meandering motion will always dominate the evolution. 

3.7    Discussion 

The purpose of this chapter was to examine the establishment of, and the transitions 

between alternate zonal flows. In this case, potential vorticity was added into the flow 

by the introduction of a topographic feature. This disturbs the potential vorticity 

from its equilibrium position along the Q = -sin^ contours. In addition, the 

meridional slope of the topography varies slowly in the zonal direction, allowing a slow 

change in the dispersion characteristics of vorticity waves which depend on dQ/dy. 

For stable, subcritical flow it has been shown that the adjustment proceeds in 
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a similar way to the hydraulic adjustment experiments of Long (1954) and Pratt 

(1983). A transition to a supercritical eastward jet takes place over the topography 

when ß + ßT exceeds the critical value determined by the steady state theory. In 

this case the vorticity waves, and specifically the second cross-channel mode, play 

the role of gravity waves in the open channel hydraulic adjustment. However, in the 

quasi-geostrophic example presented here, the waves do not carry any mass, so the 

transition is effected by shifting potential vorticity into a new equilibrium state. This 

type of transition could possibly have applications in the question of frontogenesis. If, 

through some local change in the ambient potential vorticity, the initially subcritical 

flow was rendered critical, the potential vorticity contours could collapse, forming a 

strong front. 

If the initial flow was unstable, or made unstable in a localized region by the to- 

pography, then the instability dominates the evolution. When the flow field outside 

of the topography is more unstable than the localized region, plane waves are excited 

and destroy any local signal of the initial perturbation. On the other hand, if the 

instability is localized by the topography, because the initial flow is stable or just less 

unstable then the local region, then the instability grows only over the topography, 

and spreads eastward. These results are consistent with the work on local instability 

by Pierrehumbert (1984) and Samelson and Pedlosky (1990) who find that the in- 

stability reaches a maximum amplitude downstream of where the maximum growth 

rate is located. In the present example, using the fully nonlinear quasi-geostrophic 

equations, the flow evolves into a split jet on the downstream face of the topography. 

Because of the westward interior, this final state bears a qualitative resemblance to 

the solutions along the lower branch of figure 3-1, and it is tempting to think of this 

transition between two alternate zonal flows (with the same Q(i/>)) as a catastrophic 

jump from the unstable equilibrium branch to a stable branch. 

When the initial flow was a strong eastward jet with no varicose mode, then 

hydraulic transitions are not possible. Anomalous potential vorticity is trapped over 

the topography when ßT exceeds the critical value, yet the flow up- and downstream 

is virtually symmetric. Nothing resembling a hydraulic jump forms, precisely because 
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there is no varicose mode to cause energy to converge in the fluid. Only when ßT 

is nearly double the critical value does an abrupt transition take place. As a result 

of the large disturbance, the flow reaches a new zonal equilibrium with the same 

Q(V>) relationship everywhere in the flow. Although the transition did not take place 

when ßr was at its critical value, these runs are still consistent with the notion of a 

catastrophic jump. In the present case, as ß is increased, the flow does pass along the 

solution branch until it merges with another equilibrium state. However, because this 

equilibrium is also stable, there is no mechanism to amplify small disturbances and 

cause the flow to move to a new equilibrium. It is only when the disturbance itself 

is quite large that a new state is achieved. The final state in these calculations bears 

a strong resemblance to the recent, localized instability calculations of Helfrich and 

Pedlosky (1994), which were also fully nonlinear. In their case, the flow was close to 

the instability threshold, and the disturbance caused the flow to be locally unstable, 

so the "jump" to a new zonal flow was brought about by an instability of the flow. 

It appears that the "hydraulic" behavior and the localized instabilities are both 

manifestations of the existence of multiple equilibria in quasi-geostrophic systems on 

the /5-plane. Both types of behavior are present for initial flows that He on the cen- 

ter branch of the solution curve (figure 3-1). In all of the transitions from the center 

branch, the Q{$) relationship is maintained across the transition, but has shifted from 

its original upstream form as vorticity waves propagate away from the initial distur- 

bance. An outstanding problem is a satisfactory determination of how these waves 

alter Qty) and what that new functional relationship is. Pierrehumbert and Malguzzi 

(1984) show that within closed streamlines Q(ij>) is established by a balance between 

weak dissipation and forcing, perhaps from eddy vorticity fluxes. In the present case, 

no forcing is present, and ultimately the dissipation must destroy the potential vor- 

ticity gradients. Long before this occurs, the dissipation serves to mix the fluid along 

streamlines, establishing a nearly steady state which then homogenizes (Rhines and 

Young, 1983). Is shear-enhanced dispersion the mechanism that ultimately equili- 

brates the adjustment calculations presented here or can the time-dependence alone 

establish the equilibrated state?  Related work by several previous authors indicate 
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that the time-dependence alone caused the potential vorticity field to adjust to a new 

equilibrium in their experiments. The above-mentioned experiments conducted by 

Helfrich and Pedlosky (1994) were carried out with a psuedo-spectral model contain- 

ing no explicit dissipation. In addition, the hydraulics problem of Haynes et al. (1993) 

were done with a contour dynamics model, for which potential vorticity is conserved. 

In the present study, the effect of the dissipation was estimated to be small based 

on measurements of the enstrophy and conservation of potential vorticity following 

parcels. 
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Figure 3-1: The solution curve of u(y = 0) as a function of ß from §2.7.2. Also 
included are the velocity profiles for the four initial conditions. The numbers refer 
to the sections of this chapter. The horizontal lines on the solution curve indicate 
the maximum ambient potential vorticity gradient imposed by the topography in the 

various runs. 
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Figure 3-2: The velocity profile for section 3.3, the broad eastward flow with ß = 0.21. 
Also included are the phase speeds for the normal modes. The inner two curves 
correspond to the varicose wave; the outer curves are for the sinuous wave. 
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Figure 3-3: Potential vorticity contours at times 0, 100, 800, 1700, 2000 for the broad 
eastward flow with ß = 0.21, ßT — 0.03. Contour interval is 0.2. The center plot 
shows the streamlines with a dotted line; the contour interval is 0.1. 
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Figure 3-4: Q vs. tj) for the broad, eastward flow with ß = 0.21, ßx = 0.03. 
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Figure 3-5: The momentum flux with time at X = -50 (o) and at X = +50 (*). 
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Figure 3-6:  Potential vorticity contours at times 0, 100, 150, 425, 575, 975 for the 
broad eastward flow with ß = 0.21, ßr = 0.06. Contour interval is 0.2. 
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Figure 3-7: The momentum flux with time at X = -8 (- solid line) and at X = +20 
(... dotted line). 
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Figure 3-8: Scatter plot for Q versus i}> for X = +20 (o) and X = -8 (x). at t = 1000 
The solid line is the original, upstream Q(i>) function. 
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Figure 3-9: The velocity profile and dispersion characteristics for U(y,X = +30) at 
t = 1000 for the originally broad flow with ß = 0.21 and ßT = 0.06. 
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Figure 3-10:   Latitudinal positions of the two meridional fronts at t = 1000 as a 
function of the biharmonic friction coefficient v (The abscissa is scaled by 4e-7). 
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Figure 3-11: Potential vorticity contours at times 0, 120 200, 320, 480 for the broad 
eastward flow with ß = 0.21, ßT = -0.03. The contour interval is 0.2. 
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Figure 3-12: Potential vorticity contours at t = 240 for the broad eastward flow with 
ß = 0.21, ßx = —0.03. The contour interval is 0.05 and the zero contour is dotted. 
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Figure 3-13: Q vs. i}> for the broad eastward flow with ß = 0.21, ßT = -0.03. 
The t = 0 plot shows the entire Q(^) field. Subsequent plots show Q(^) only at 
X = -33,0 and + 33. The solid line is the original Q = -sim/>. 
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Figure 3-14: Potential vorticity contours at times 0, 80, 120, 200, 240 for the broad 
eastward flow with ß = 0.21, ßr = —0.03 and zero viscosity. The contour interval is 
0.2. 
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Figure 3-15: Spaghetti diagram for the Eulerian flow field shown in figure 3-11. 
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Figure 3-16: Values of potential vorticity for the twelve floats that began at X = 0. 
The dotted line indicates the run with zero viscosity; the solid line is for the run with 
artificial viscosity. 
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Figure 3-17: The velocity profile and dispersion characteristics when ß = 0.19 and the 
solution lies on the center branch of the solution curve. Of the two distinct normal 
modes, the sinuous mode has the larger growth rate. 
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Figure 3-18: Evolution of the potential vorticity contours at times 0, 125 200 225 250 
350 for the unstable "split flow" with ß = 0.19, ßT = 0.03. 
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Figure 3-19: Potential vorticity contours at times 0, 160, 200, 240 for the "split flow" 
with ß = 0.19, ßT = -0.03. 
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Figure 3-20: The velocity profile u(y) and dispersion characteristics for section 3.5. 
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Figure 3-21:  Potential vorticity contours at times 0, 25, 50, 175, 275, 350 for the 
narrow eastward jet with ß = 0.21, ßT = 0.03. Contour interval is 0.2. 
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Figure 3-22: Scatter plots of Q versus tj> for the narrow eastward jet with ß = 0.21, 
ßr = 0.03. 
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Figure 3-23: Potential vorticity contours at times 0, 75, 150, 325, 500 for the narrow, 
eastward jet with ß = 0.21, ßT = 0.06. Contour interval is 0.2. 
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Figure 3-24: Scatter plots of Q versus if) for the the narrow, eastward jet with ß = 0.21, 
ßr = 0.06. 
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Figure 3-25: Zonal velocities at X = —30 (dashed line), X = 30 (dotted line), and 
X = 0 (solid line) at * = 500 for the originally narrow jet with ß = 0.21, ßT = 0.06. 
Also shown (on the right) is the dispersion diagram for the zonal flow at X = 0. 
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Figure 3-26: Potential vorticity contours at times 0, 360, 640, 840, 1600, 4000 for the 
narrow, eastward jet with ß = 0.21, ßx = 0.09. Contour interval is 0.2. 
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Figure 3-27: Scatter plots of Q versus tj) for the narrow eastward jet with ß = 0.21, 
ßr = 0.09. 
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Figure 3-28: The velocity profile and dispersion characteristics for the "split flow" of 
§3.6 with ß = 0.08. 
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Figure 3-29: Potential vorticity contours at times 0, 50, 60, 70, 80 for the "split flow" 
with ß = 0.08, ßT = -0.001. Contour interval is 0.2. 
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Chapter 4 

Unbounded Domains 

4.1    Introduction 

In chapter 2, a necessary condition for the existence of non-unique states was found 

and this condition is identical to Arnol'd's second theorem which provides a necessary 

condition for instability. The derivative dQ/diß provides a bound to the local merid- 

ional wavenumber of the flow, and solutions are unique if the channel width is smaller 

than this bound. It was also shown that the equivalence of the two theorems was not 

fortuitous; multiple solutions arise at a pitchfork bifurcation as a stability parameter 

is raised above the threshold determined by Arnol'd's theorem. However, these results 

depended crucially on the boundedness of the domain, and in fact, by normalizing 

the Q(i>) function, the channel half-width, L, was used as the stabiHty parameter. 

In an unbounded domain the condition for uniqueness reduces to dQ/dtj) > 0, which 

is identical to Arnol'd's first theorem.  This criterion for uniqueness was first men- 

tioned by Carnevale and Fredricksen (1987).   It is natural to ask, what happens if 

this condition is violated? Do multiple states exist, and do they correspond to stable 

and unstable equilibria as they did in the bounded domain?   The purpose of this 

brief chapter is to make a few comments about the existence of alternate states in an 

unbounded domain. 

At first glance, this seems Hke a trivial issue.  Certainly there is no difference in 

the instability mechanism in bounded and unbounded domains.   However, perhaps 
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the boundaries play a role in the equilibration of the instability. Certainly in the 

numerical calculations of chapter 3, and in Helfrich and Pedlosky (1994), the channel 

walls serve to confine the flow. In fact, many of the applications of catastrophe the- 

ory take place in bounded domains. For example, the elastic stability problem of a 

loaded beam, with fixed endpoints is often used as an example of the cusp catastro- 

phe (Thompson and Hunt, 1973). In hydrodynamic stability, Benjamin (1978b) has 

applied bifurcation theory to account for qualitative experimental results regarding 

the Taylor experiments on Couette flow between rotating cylinders. Benjamin points 

out that some of the properties associated with the bifurcating system arise because 

the flows are bounded, and may become untrue if this assumption is relaxed. 

The following two sections contain a description of two simple examples of un- 

bounded flows. The first is based on the well-known Bickley jet which has unstable 

sinuous and varicose modes. The second example is a piecewise-linear Q(ij>) function 

in two layers. 

4.2    Bickley Jet 

As a simple example of a symmetric jet on the infinite plane, consider the Bickley jet 

U  =  sech2y. 

The stability properties of this jet have been well documented, dating back to Bickley 

(1937) and Sato and Kuriki (1961). A symmetric, or sinuous mode is unstable in the 

range k = [0,2]. An antisymmetric, varicose wave is unstable for A; = [0,1]. The 

short-wave cutoff for both waves have a phase speed c = 2/3, equal to the velocity at 

the critical latitude. 

Since the flow is unstable we expect that dQ/dip is negative somewhere in the 

flow. This may easily be verified since, on the /-plane, the Q(ip) function may be 

found analytically and is 

Qtf)  =  2^2 - 1). (4.1) 
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Given this Q(ip) function, a shooting method is employed to find solutions ij>(y) to the 

potential vorticity equation. In the unbounded domain, Perov's theorem predicts an 

infinite number of solutions, each with its own number of turning points. However, the 

wave-like solutions, which have turning points at infinity are inappropriate alternate 

states, where we expect the structure to be undisturbed at infinity. The only solutions 

that decay as y —► ±00 are the null solution and ip — ± tanh t/, and since this is on 

the /-plane, the latter two solutions are equivalent. Therefore, the Bickley jet is a 

unique solution. 

Multiple solutions can be found in an unbounded domain if a shear region is 

bounded by fronts, across which the potential vorticity relation Q(iß) changes. These 

fronts separate the interior shear region of the jet (with Q(i>) given by 4.1) from 

an exterior flow, which decays smoothly to a uniform flow at infinity. The exterior 

potential vorticity is taken to be 

Q  = a2if> ± Q0 

where the sign convention will be that the constant is positive north of the fronts 

and negative to the south. The actual form of the exterior potential vorticity is 

determined by the constants a2 and Q0, and in particular they set the strength of 

the jump of potential vorticity. At the southern front 

AQ    =    a21po    -   Qo- Q interior (^o) 

The exterior streamfunction is 

ß    ,  Qo 
a2 ,   y>L + = (Vo + 4 J - %) *<y-L) + 4* + \ a2 a2 J a1 

I (      I ß   T   .    Q°\     -a(y-L)     ,      ß ,     $0       „   . T 

\ a1        cr J a* az 

where ±L are the unknown latitudes of the fronts and =F^0 are the streamlines along 

the fronts. The shooting method begins at — Lg, an estimate of the latitude of the 
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southern front, and integrates across the interior until y = +Lg. The process is 

iterated until the streamfunction if)0 and the velocity u match the exterior solution 

at the proper L. 

A solution curve for ip0 = 1, Qo = -2 and a2 = 1 is shown in figure 4-1. With this 

value of ifro, the potential vorticity just on the interior side of the front is Q = 0. For 

a given ß each solution is characterized by L, the latitude of the potential vorticity 

front. All points on the curve connecting A,P and B correspond to symmetric velocity 

profiles. This curve has a turning point at ß = 0.222. No symmetric solutions exist 

for ß larger than this value. The point P denotes a pitchfork bifurcation. All points 

on the curve connecting D, P and C are asymmetric. The upper branch of this curve 

has a turning point at ß = 0.27. If ß is larger than this value then no solution with 

this potential vorticity function exists. 

None of these solutions look like the Bickley jet because of the discontinuity in 

Q. The solutions can be made more similar to the Bickley jet if the jump in Q is 

reduced; however multiple solutions can not be found unless Q0 > <x2tpo, i.e. dQ/dip 

must be negative across the fronts. 

The curve of symmetric solutions has a turning point at ß = 0.222. Does this 

turning point separate the symmetric solutions into states that are stable and unstable 

with respect to a particular mode? Because the turning point separates symmetric 

solutions of different widths, the relevant wave mode is the varicose wave. In addition, 

there is a bifurcation of asymmetric solutions. Does this point separate solutions that 

are stable and unstable to the sinuous mode? 

The two symmetric velocity profiles A and B at ß — 0.18 are shown in figure 4-2 

along with their dispersion characteristics. The dispersion characteristics are quite 

similar for these two solutions on opposite branches. Both velocity profiles have 

four distinct normal modes; two of which are antisymmetric and two of which are 

symmetric. In each of these pairs, one is stable and the other is unstable. Both of 

the stable modes have c < umin, and although the phase speed of the two modes 

overlaps for small k, this does not represent a merger of two neutral modes to form 

an unstable mode, since the waves maintain their distinct symmetry.   The fastest 
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growing unstable mode for both velocity profiles is the sinuous wave. For solution 

A, the sinuous wave is unstable in the range k = [0,2.5], and the varicose wave is 

unstable from k — 0.3 to k = 1.9. When L = 3, for solution B, the sinuous wave 

is unstable in the range k = [0.6,1.75] and the varicose is unstable from the longest 

waves to a short-wave cutoff at k = 0.75. Note, that based on the real part of the 

phase speed, no hydraulic interpretation is possible for these two states, since both 

velocity profiles have phase speeds c with the same sign for identical varicose modes. 

On both sides of the turning point, the stability properties are very similar; both 

branches of steady, zonal flows are unstable to both the varicose mode and the sinuous 

mode. This is in sharp contrast to the change in stability seen in the channel model, 

where typically one branch was stable and the other was unstable. In the channel 

model unstable flows equilibrated by "jumping" to the stable branch on the other 

side of the turning point. Presumably, no such equilibration can take place with this 

potential vorticity distribution in the unbounded domain since both zonal states are 

unstable. 

4.3    Two Layer Fluid 

In the present work and previous work on the hydraulics of zonal flows, the problem 

was considered in a single moving layer of fluid. This is clearly an oversimplification 

in modeling current systems such as the Gulf Stream which have much stronger 

velocities in the upper portions of the water column. For instance, Hall and Fofonoff 

(1993) state that a minimum of three layers are necessary to capture the vertical 

structure of the potential vorticity dynamics. These layers include a top layer with a 

single front of potential vorticity, a thermocline layer with a double front of potential 

vorticity, containing a relative minimum between the two fronts, and a lower layer 

with nearly uniform potential vorticity. In addition, they conclude that the lower 

layer must be active, since interactions with the ocean bottom play an important role 

in the downstream evolution of the stream. 

The purpose of this final section is to explore the effect of stratification on the 
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existence of multiple solutions in an unbounded domain. For simplicity, only two 

layers will be considered, corresponding to the lower two layers suggested by Hall and 

Fofonoff (1993). As in the rest of the thesis, we make use of a steady, inviscid quasi- 

geostrophic model on the /?-plane, and as in the rest of the chapter, the domain is 

assumed to be unbounded. In non-dimensional units, the potential vorticity equations 

are 

VVn + (-lTFntyi-fa) + ßy + Vb6(n-2)  =  Qntyn) (4.2) 

where n = 1 refers to the upper layer and n = 2 refers to the lower layer. The new 

non-dimensional parameter 
ßL2 

F„ 

is a measure of the stratification, where S-£,L, and Dn are respectively, the density 

difference between the two layers divided by the mean density, a typical horizontal 

length scale in the problem, and the thickness of each layer. 

It is assumed that the functional relationship between QJ^n) is determined by 

the equilibration of processes that occur upstream, out of the model region. To mimic 

the recirculations, which have much stronger barotropic components than the stream 

itself, it is assumed that far from the topography, and far from the core of the jet the 

background flow in both layers is taken to be a weak, uniform westward flow u = -ub. 

A uniform flow on the ß plane leads to a linear relationship between the potential 

vorticity and the streamfunction, so that far from the jet 

where 

c?   =  (ß/ub). 

In the upper layer, the choice of Q(if>) is based on the existence of steep gradients 

of potential vorticity that exist in the upper waters of the Gulf Stream system east of 

Cape Hatteras. As in many contour dynamic models of zonal jets, these gradients are 

modeled as discontinuities in the potential vorticity function. The potential vorticity 
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in the upper layer is chosen to be 

Ql(^1)  =  a2^  - Fx (V>i - ^2) + Jtyi) 

where the jumps in potential vorticity are represented by 

J= < 

nx   y > Li(x) 

n2  L2(x) > y > Li(x) 

n3   y < L2(x) 

Note that Lj(x) and L2(x) are the locations of streamlines, IJ>N and ips, that separate 

the flow into three regions, across which the potential vorticity jumps. 

It is further assumed that the zonal scales of the topography and the flow are 

much longer than the meridional scales and the deformation radius, and that u is 

much larger than v. In this case, the relative vorticity V2if> may be replaced by the 

shear, d2iß/dy2. 

With these assumptions, the potential vorticity equation becomes a set of coupled, 

ordinary differential equations 

d^/dy2 - F^fa-fo) + ßy  =  Q1(i>1)  =  -j^ - tf2) + a2^  + J 

0V2/V - Mfa-fa) + ßy + VB = £2(^2) = -F2(j>2 - tfO + «2V>2- 

Because the coupled equations are piecewise-linear, they can be "diagonalized" lead- 

ing to uncoupled equations for the barotropic and baroclinic modes 

d2^Tldy2 - O?^T   =   ~ßy(l + ^)-^VB + J     (4.3) 

d2^c/dy2 -  (a2 + Fr + F2)j>c   =   +VB + J (4-4) 

where 

F2 
i>T = i>i + —-02   and   if>c = il>i- '02- 
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Solutions to these uncoupled equations are easily found by assuming that the 

streamfunction and the velocity field must match across the jumps in potential vor- 

ticity. In addition, the zonal velocity field must approach the constant background 

value, -ub as y —► ±00. The solutions are 

i>T  =  a"2 [ß(l + f )y + f r,B]  + 

(2a2)"1 [(H2 - n3)e-aAi + (Ex - n2)] e^u^O - a"2n!   y>Li 

(2a2)-1 |(n2-n1)e-«^-3') + (n2-n3)e-
a(*-L3>] -a~2n2 L2<y<L1 

(2a2)-1  (n2 - nx)e-aAi + (us - H2)] e~<L^ - a"2n3  y < L2 
K (4.5) 

i>c = -I~
2
VB + 

(272)-1 [(n2 - n3)e-^Ai + (Hi - n2)] c-*v-£o - 7"2ni y>Lx 

(272)-1 [(n2-noe-rf^-ri + (n2-n3)e-^-r2)] -7_2n2 L2<y<Lx 

(272)-1 (n2 - ni)e-^AL + (n3 - n2)l e-<
L*-^ - 7~2n3 y < L2 

L (4-6) 

where 72 _ a2 + ^ + p2m A sketch of a sample velocity profile for zonal flow far 

from the topography is shown in figure 4-3. The fronts of potential vorticity form an 

eastward jet, primarily in the upper layer, and there is a weak background barotropic 

flow that is directed to the west. The non-dimensional scales used for this figure are 

chosen to characterize the Gulf Stream. If we take L w 100km and U = lms'1, 

then the non-dimensional ß « 0.15. The scales for the layer depths are Dx w 500m 

and D2 ta 4000m, which gives F1/F2 = 8. The transport is non-dimensionalized 

by UL(D! + D2) = 450Sv. Using Mann's (1967) estimate of hOSv entering the 

branching region gives a non-dimensional transport of TT = 1/9. For these non- 

dimensional numbers, the potential vorticity fronts are quite close together, forming 

a single eastward jet, primarily in the upper layer and there is a weak background 

barotropic flow that is directed to the west. 

The whole approach of this section is similar to Pratt (1989) who considered a 

double front of potential vorticity in the lower layer of a two layer model in which 

the upper layer was quiescent. In both cases, the model is carried out on the ß- 

plane, with slowly-varying bottom topography.   Since, in the present example, the 
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fronts and topography are in separate layers, the Pratt model is not a limit of this 

two-layer model as Dr -» oo. Yet, a comparison with Pratt (1989) shows that the 

barotropic component of the flow (4.5) is identical in form to the 1-1/2 layer solution; 

the only effect of the stratification is to temper the effect of the topography. This is 

in sharp contrast to contour dynamics calculations which behave quite differently for 

1-1/2 layer models and models which do include a barotropic component. In contour 

dynamics, the potential vorticity is piecewise constant and the intrinsic length scale 

for each mode is the radius of deformation. Thus, if a barotropic mode is present, the 

infinitely-long barotropic deformation radius is the relevant length scale for that mode. 

The dynamical equation in that case is a Laplacian, rather than Helmholtz's equation; 

a difference which leads to a quite different Green's function for the barotropic mode. 

In the present calculations, the ambient potential vorticity gradient, a2, determines 

the intrinsic length scale for the barotropic mode, and a Helmholtz equation, (4.3) is 

recovered. 

Given the piecewise-linear potential vorticity function, are multiple barotropic 

states with the same Q(ip) and transport possible? For these flows, a natural choice 

for a measure of the transport is the flux through the center portion of the jet, between 

the two streamlines that lie along the fronts of potential vorticity. The barotropic 

transport is then 

TT = My = £i) - Mv = L*) (4-7) 

=   I (H - H3) (1 - e'^L - ß(l + ^-)AL - ffrAL (4.8) 

which can be rewritten as 

(1 + * „ + *Ä = im-n,xi^«-" )-«r* (4.9) 

The left hand side is the total ambient potential vorticity gradient. Thus, for a given 

Q(ip) relationship, (4.9) determines the possible values of AL, which can exist for a 

given ambient potential vorticity gradient.   Figure 4-4 illustrates how AL depends 
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on the topographic slope for a particular choice of Q(# K *s clear from (4"9)' that 

when the total ambient potential vorticity gradient approaches zero, one of the two 

solutions has AL -> oo. Thus, two alternate states are possible only when the total 

ambient potential vorticity gradient is positive and less than a critical value which 

depends on the particular choice of Qty). The critical slope can be found for arbitrary 

piecewise linear Q{rß) by differentiating (4.9) with respect to AI and then using (4.9) 

to eliminate TT 

ßT(critical) =  |f (Ex - 11»)«-^ - (f + W- (4-10) 

In this particular example, the critical topographic slope is ßT « 0.22; in dimensional 

units this corresponds to a depth change of approximately 1000m over lOOfcm in 

latitude, a value which is consistent with the change in depth southeast of the Grand 

Banks of Newfoundland. The alternate state is a split flow. 

4.4    Discussion 

Two different potential vorticity functions in an unbounded domain were considered 

in this chapter. The first had a nonlinear Qty) function bounded by two fronts of 

potential vorticity which separated the interior region from an exterior flow with a 

linear Q{ip). The specific functional form of the interior Q{j>) was chosen to be the 

same as the Bickley jet. Multiple solutions were found for ß less than a critical 

value which depends on the specific Q{tß) function chosen. In the particular example 

given, two symmetric solutions exist for ß < 0.22, and two branches of asymmetric 

solutions bifurcate off of the curve of symmetric solutions. Because of the fronts of 

potential vorticity, the velocity profiles do not look like the Bickley jet, or a split 

jet. The choice of the fronts and the exterior potential vorticity was arbitrary, and 

simply chosen to allow the velocity field to decay as y -> ±oo. Another choice for 

the potential vorticity might be to use the nonlinear Bickley Qty) function in the 

exterior with a different function in the interior, representing the split flow. However, 
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there is no a priori way of determining the function Q(i>) in the interior. 

The second set of velocity profiles has a piecewise linear Q(i>) in two layers. This 

two-layer system was chosen to have transport values, layer depths and potential 

vorticity fronts that are consistent with Gulf Stream values. The Q(if>) function also 

exhibits multiple states for ambient potential vorticity gradients less than a critical 

value, which in this case can be determined analytically. For the Gulf Stream pa- 

rameters, the value of the critical gradient is consistent with the topographic slope 

southeast of the Grand Banks. This system does not have any symmetry-breaking 

pitchfork bifurcations; the only way the piecewise linear potential vorticity can have 

asymmetric velocity profiles is through an asymmetry in the potential vorticity func- 

tion itself. 

These two examples exhibit two differences from the results for a bounded domain. 

In the channel geometry, at least one solution with the original Q(i}>) exists for all 

ambient potential vorticity gradients. In the present examples, solutions do not exist 

if the ambient potential vorticity exceeds some critical value. If the ambient potential 

vorticity is raised above this critical value, then the flow must adjust to some other 

Q(iß) distribution, since there is no other solution branch with the original Q(ij>) to 

which the flow can adjust. In addition, the turning points of the solution curve do not 

correspond to stability thresholds. In the first example of this chapter, both sets of 

solutions on either side of the turning point are unstable. This implies that if a zonal 

flow lying on one branch is perturbed, it does not equilibrate to a zonal flow on the 

other branch with the same Q{ij>) since that solution is unstable as well. Presumably, 

the flow will equilibrate to some other Q(iß) distribution, or perhaps a periodic flow. 

To explore these issues, numerical adjustment problems similar to those in chapter 3, 

would have to be carried out. 
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Figure 4-1: Solution curves showing L, the latitude of the jump in Q as a function of 

ß- 
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Figure 4-2: Velocity profiles and dispersion relationships for solution A (upper panels) 
and B (lower panels). 
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Figure 4-3: A sample velocity profile for the case a = 1, ß = 0.15, a - b = 6.5, 
b - c = 1.5, ßT = 0, F1/F2 = 8. The solid line shows the velocity profile in the upper 

layer; the dashed line shows u(y) in the lower layer. 
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Figure 4-4: Solution curve showing AL as a function of ßx for the parameter values 
chosen in figure 4-3. 
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Chapter 5 

Conclusions 

This thesis was concerned with the dynamics behind the splitting of jets in the at- 

mosphere and the ocean. Observations of such phenomena, discussed in chapter 1, 

indicate that the transitions are fairly persistent in time and that the double-jet struc- 

ture is quite long in space. These observations suggest considering transitions between 

zonally-uniform equilibrium states. One such theory, originally suggested by Rossby 

(1950) to account for atmospheric blocking, is based on an analogy with open channel 

hydraulics. Previous authors (Pratt (1989) and Woods (1993)) have interpreted the 

existence of multiple flows with the same Q(ip) relationship as an indication that the 

flow behaves as a hydraulic system; transitions between alternate states can occur if 

the ambient potential vorticity gradient is varied ( by, for instance, topography) along 

the direction of the flow. Another theory to account for local changes in a zonal flow 

are the theories of local instability. The work by Pierrehumbert (1984) and Samelson 

and Pedlosky (1990) indicate that changes in the topographic gradient could render 

the flow locally unstable, and the disturbance is felt downstream of the topography 

and not upstream. By inference, this suggests that the Q{ij>) relationship is carried 

from the upstream flow to a different velocity structure downstream. 

In an attempt to understand these transitions, several questions were addressed. 

The first asks, rather generally, what conditions are necessary for a given Q(iß) func- 

tion to have several different velocity structures? Then, given the existence of these 

alternate states, it is necessary to consider the dispersion characteristics of such flows, 
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and the time-dependent adjustment of them to topographic perturbations to deter- 

mine the extent to which the hydraulic analogy holds and also if and how the insta- 

bilities of the flow equilibrate. 

By referring to the theory of two-point boundary value problems, chapter 2 es- 

tablished conditions on Q(if>) which cause the potential vorticity equation to have a 

unique solution. If g is positive everywhere in the fluid domain, then the velocity 

structure is unique; note that this condition is identical to Arnol'd's first stability the- 

orem. If U is negative somewhere in the flow, but it is bounded from below by the 

meridional wavenumber of the finite domain, then the flow is unique. This condition 

is identical to Arnol'd's second theorem, which guarantees stability in the bounded 

domain. The violation of these conditions give a necessary condition for multiplicity, 

as well as the equivalent necessary condition for instability. Another important con- 

dition for alternate states is that Q{i>) is nonlinear. If g. is a constant, then section 

2.6 shows that either 1) there is a unique solution or 2) there can be an uncountable 

infinity of solutions which satisfy the potential vorticity equation, since, in that case, 

the amplitude of the sinusoidal wave is not specified by the boundaries. To have a 

discrete set of alternate states, g must not be a constant. It is interesting to note 

that the weakly nonlinear theories also demand that 0 be non-zero for the existence 

of solitary waves. 

The onset of instability and the existence of multiple equilibria were shown to 

coincide for the barotropic instability problem considered in section 2.7, in which the 

potential vorticity varied sinusoidally with the streamfunction. On the stable side of 

the stability threshold, there exists a unique stable solution without normal modes. 

Multiple solutions arise at a pitchfork bifurcation as a stability parameter is raised 

above the stability threshold determined by the necessary condition for instability. 

The center branch of the pitchfork is unstable to the gravest mode, while the two 

outer branches do not even have discrete modes. Other pitchfork bifurcations occur 

as higher meridional modes become unstable. Again, the inner branch is unstable to 

the next gravest mode, while the outer branches do not support this discrete mode. 

These results place the barotropic instability problem into a large set of nonlinear 
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systems described by bifurcation theory. However, if the eastward transport across 

the channel is large enough, the normal modes may stabilize and these waves have 

a phase speed less than the minimum velocity of the flow. In this case, the flow is 

analogous to sub-critical hydraulic flow. 

In Chapter 3 the time-dependent evolution of the jets described in §2.7.2 was 

examined, to consider whether transitions among alternate states take place and 

whether these are due to hydraulic behavior or the equilibration of localized insta- 

bilities. If the equilibrium is unstable, then the disturbance will cause the flow to 

equilibrate to some new, stable (although not necessarily steady) equilibrium as the 

instability mechanism saturates. In chapter 3, potential vorticity was altered by the 

introduction of a topographic feature. The meridional slope of the topography varies 

slowly in the zonal direction, allowing a slow change in the dispersion characteris- 

tics of vorticity waves which depend on dQ/dy. Three different types of adjustments 

to other zonally uniform states were observed in chapter 3, and these are described 

below. 

For stable, subcritical flow it has been shown that the adjustment proceeds in 

a similar way to the hydraulic adjustment experiments of Long (1954) and Pratt 

(1983). A transition to a supercritical eastward jet takes place over the topography 

when ß -f ßT exceeds the critical value determined by the steady state theory. Note 

that this change in the ambient potential vorticity enhances the stability of the flow. 

Upstream and downstream influence take place simultaneously, as the topography 

controls the flow. In this case the vorticity waves, and specifically the second cross- 

channel mode, play the role of gravity waves in the open channel hydraulic adjustment. 

However, in the quasi-geostrophic example presented here, the waves do not carry any 

mass, so the transition is effected by shifting potential vorticity into a new equilibrium 

distribution. 

If the initial flow was unstable, or made unstable in a localized region by the 

topography, then the instability dominates the evolution. When the flow field outside 

of the topography is more unstable than the localized region, plane waves are excited 

and destroy any localized signal of the initial perturbation. On the other hand, if the 
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instability is localized by the topography, because the initial flow is stable or just less 

unstable than the local region, then the instability grows only over the topography, 

and then spreads eastward. The flow evolves into a split jet on the downstream face of 

the topography. Although the interior is westward, the streamlines are all connected 

to the upstream flow, and the reversed flow arises as some streamlines "wrap-around." 

During the adjustment a potential vorticity wave also propagates upstream, causing 

the Q(i>) relationship to change there. Accordingly, in the local instability problem, 

the topography has exerted upstream influence on the flow and the fluid can be said 

to be "controlled" by the topography, since a change in the local topography causes 

changes in the far field. By the final time step, both up- and downstream have the 

same Q{i>) on all streamlines originating from upstream. Because of the westward 

interior, the downstream state bears a qualitative resemblance to the solutions along 

the lower branch of figure 3-1, and it is tempting to think of this transition between 

two alternate zonal flows (with the same Q(ip)) as a catastrophic jump from the 

unstable equilibrium branch to a stable branch. 

When the initial flow was a strong eastward jet with no varicose mode, hydraulic 

transitions are not possible. Anomalous potential vorticity is trapped over the to- 

pography when ßr exceeds the critical value, yet the flow up- and downstream is 

virtually symmetric. Nothing resembling a hydraulic jump forms, precisely because 

there is no varicose mode to cause energy to converge in the fluid. Only when ßx 

is nearly double the critical value does an abrupt transition take place. As a result 

of the large disturbance, the flow reaches a new zonal equilibrium with the same 

Q{ij>) relationship everywhere in the flow. Although the transition did not take place 

when ßx was at its critical value, these runs are still consistent with the notion of a 

catastrophic jump. In the present case, as ß is increased, the flow does pass along the 

solution branch until it merges with another equilibrium state. However, because this 

equilibrium is also stable, there is no mechanism to amplify small disturbances and 

cause the flow to move to a new equilibrium. It is only when the disturbance itself is 

quite large that a new state is achieved. As in the previous run, the new zonal flow 

bears a qualitative resemblance to the solutions along the lower branch of the solution 
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curve in figure 3-1. In this case, no upstream influence is felt, precisely because no 

varicose mode exists to carry the signal upstream and away from the region of the 

topography. 

This thesis has established a connection between the previous work of "hydraulics" 

theories and the barotropic instability of the flow. Both types of dynamics arise 

from adjustments among multiple equilibria. The stable, eastward flow is subject to 

hydraulic control and establishes a narrow eastward jet downstream of the region of 

topography, while exerting influence upstream. The control is established only when 

the topographic slope exceeds a critical value, determined by the semi-analytical 

theory. If the same eastward flow is made locally unstable by topography, then a 

"split flow" is established downstream, and upstream influence is again felt. In both 

cases, the topography "controls" the fluid, and the final state depends on the sign 

of the topographic slope. A hallmark of both of these phenomena is that Q(ij>) is 

maintained across the transition, although it has adjusted from its original upstream 

form. Hydraulic behavior only appears when the flow is broad and stable. If the 

flow is unstable at any wavelengths, hydraulic control is not established and instead 

the instability dominates the evolution. The localized instability, which causes a 

"splitting" is probably more relevant since geophysical flows are never firmly stable, 

but rather only marginally so. 

Several interesting questions about the equilibration of disturbed flows have been 

raised in this thesis. Both processes, stable hydraulic control and the local instability, 

produce a transition between quite different zonal flows which nevertheless share the 

same Q(i/>) structure. However, the observations of atmospheric blocking show that 

the flow is not particularly zonal after the split. An area of future work involves look- 

ing for multiple states which are x-dependent, and determining whether transitions 

between them take place when modes with finite wavelengths are unstable. These 

considerations suggest that a semi-analytical model of the nonlinear equilibration of 

local instabilities could possibly be constructed in the future, if the change in Q(tp) 

from its original form was understood. Another interesting question regards the equi- 

libration of instabilities in an unbounded domain, in which all of the alternate velocity 
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profiles are unstable. The thesis suggests that the flow can not equilibrate to a zonal 

alternate, and must find another equilibrated form. It is clear that an answer to either 

question can not be found by considering the multiple velocity structures that have 

the same Q{$) as the original flow, since an adjustment of Qty) takes place during 

the evolution. However, perhaps by considering other constants of the motion, such 

a model could be constructed. 

Finally, I would like to say a few words regarding the relevance of this thesis to 

actual flows in the atmosphere and the ocean. Clearly, the assumptions made and the 

velocity structures used were over-simplifications which may have made the problem 

tractable, but eliminated very important dynamical effects due to stratification, and 

external forcing. However, these simplifying assumptions, which reduced the potential 

vorticity equation to its simplest possible form, did suggest several processes which 

have hitherto gone unnoticed in the context of the instability of geophysical flows. 

Nevertheless, some of these assumptions should be examined to test whether their 

inclusion would alter the conclusions of the thesis. 

One simplification was the use of a single layer to model the dynamics of geo- 

physical systems which typically need at least two or three layers to accurately model 

their full dynamics. However, the principal dynamics involving topographic forcing 

and nonlinear interaction due the advective terms may be studied in the context of a 

barotropic model. Work by Helfrich and Pedlosky (1994) indicates that the baroclinic 

instability equilibrates to alternate Q(i>) structures as well. In the one example of 

this thesis with two-layers, the lower layer only served to insulate the upper layer 

with the jet from the topography. The existence of multiple states was unaffected by 

the addition of a second layer. 

Another concern is the importance of the varicose wave in this work, even though, 

for most jets, the sinuous wave typically has a larger growth rate and dominates the 

observed fluctuations of the Gulf Stream. Even for the Q = - sin ij> jets considered 

here, the sinuous mode has a larger growth rate than the the varicose mode and the 

fully nonlinear adjustment calculations show large amplitude meanders (reflected from 

the "sponge") that are consistent with the dispersion characteristics of the basic flow. 
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Indeed, for the "split" initial condition (described in section 3.6), the meandering 

motion quickly dominated the evolution and there is no sign of a "jump" to another 

symmetric state. However, for the other initial conditions, the meanders do not affect 

the finite-amplitude equilibration of the varicose mode and the conclusion is that the 

"splitting" due to the finite-amplitude varicose motion is possible in the presence 

large amplitude meanders, although this issue needs to be examined more carefully. 

Although the potential vorticity structures used in the numerical calculations are 

too simple to be an accurate model of the Gulf Stream, the multiple solutions arise at 

realistic values of the non-dimensional parameters. For instance, in the Gulf Stream, 

typical values of ß — ^- range between 0.05 and 0.3, which are within the range 

of values for which the Q = — sin ip system has multiple solutions. Even though 

the choice of Q = — sin if) was arbitrary, the Gulf Stream and other geophysical 

jets are considered to be unstable and the thesis suggests that they are therefore also 

non-unique. 

In the introductory chapter, it was stated that an objective of the thesis was to 

examine the theory of planetary scale hydraulics in order to explore its strengths as 

a conceptual model for understanding the dynamics of geophysical zonal jets, which 

are typically unstable. This issue will now be examined by discussing several features 

of the hydraulics and instability theories. 

There are several features which indicate that hydraulic control has been estab- 

lished 

• The topography exerts its influence into the far-field, "controlling" the flow. 

• There is a strong asymmetry in the flow in the along-stream direction; the flow 

is subcritical upstream of the topography and supercritical downstream. 

• A jump is established downstream, bringing the supercritical flow back to its 

its original, undisturbed form. 

In chapter 3, a localized instability problem was examined, and this example does 

indeed exhibit these features. For instance, although the flow only exceeded the sta- 

bility threshold in a localized region, the influence of this region was felt far down 
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field, as the "rolled-up" region slowly spreads downstream, filling the eastern half of 

the domain. Upstream influence is also felt, as a vorticity wave propagated upstream, 

altering the Q(^) structure. In addition, the field shows a strong asymmetry in the 

along-channel direction; the flow undergoes a transition from a nearly uniform, east- 

ward flow on the upstream side of the topography, to a "split" flow with a westward 

interior, on the downstream side. The transition takes place right at the crest of the 

ridge where there is a stagnation point. Finally, in the downstream flow, the "roll- 

up" region is connected to the undisturbed flow by a strong meridional jet, which 

propagates downstream. 

At a fundamental level, a hydraulic control is a resonance phenomenon. When the 

flow is at or near the critical condition, large changes in the flow may be brought about 

by small changes in geometry of the flow (either the level of the bed, or the horizontal 

width of the flow). One conceptual picture of non-dissipative shear instabilies is also 

based on the phenomenon of resonance. For example, Lighthill (1963), Bretherton 

(1966b) and Hoskins et al. (1985), Hayashi and Young (1987) show that shear in- 

stability operates when two counter-propagating vorticity waves remain stationary 

relative to each other. Another example is the 'orographic' instability considered by 

Plumb (1981) and described by Mclntyre and Shepherd (1987). The instability is sup- 

pressed if the domain is such that stationary Rossby waves can not exist, preventing 

the resonance, or self-tuning phenomenon from working. 

The theory of hydraulics led to a consideration, in chapter 2, of multiple equilib- 

ria in an unforced, inviscid system. This is in contrast to other multiple equilibria 

theories, such as Charney and DeVore (1979) which are carried out for forced, dissi- 

pative systems. It is suggested that there is an internal mechanism due to localized 

instability, or hydraulic control, which can provide a transition among free modes. 

The lack of external forcing may actually be a strength of the present model since 

there is evidence that observed transitions (discussed in chapter 1) are due to inter- 

nal mechanism, rather than external forcing. For instance, Kelly (1991) concludes 

that the New England Seamount Chain is the site of an abrupt transition from a 

narrow supercritical jet to a jet with large amplitude meanders which have no con- 
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sistent propagation direction. However, this region is also a region of maximum heat 

flux and wind stress, so that local atmospheric forcing may also cause changes in 

the Gulf Stream there. Ezer (1994) addressed this issue using a primitive equation 

model forced by climatological wind stresses and heat fluxes. By comparing a simu- 

lation with the full bottom topography, with a control run without the New England 

Seamount Chain, he demonstrated that the topography has a significant influence 

on the variability and energetics of the Gulf Stream. In particular, the Gulf Stream 

broadens as it passes over the seamount chain, and several recirculation cells develop 

in the region; these features are consistent with Kelly's observations, and indicate that 

the topography, not external forcing, causes the transition. An examination of the 

results of similar numerical experiments by Thompson and Schmitz (1989), indicates 

that the splitting of the Gulf Stream is also caused by topography (the Newfoundland 

Rise), and not external forcing. 

In addition, there is considerable evidence that atmospheric blocks may be consid- 

ered as a free mode of the atmospheric system, not simply because of their longevity, 

but because observational studies show that their is a close coincidence of potential 

vorticity contours and streamlines in the atmosphere (Illari and Marshall, 1983; 

Butchart, et ah, 1989). These studies used scatter plots of Q: the quasi-geostrophic 

potential vorticity, versus the streamfunction and showed that the functional rela- 

tionship between the two is nearly linear, with a negative slope, which is consistent 

with the necessary condition for multiple equilibria established here. If the block is 

strongly nonlinear, then the interior region is a closed patch of potential vorticity, the 

value of which must be determined through a balance of forcing and dissipation, as 

described by Pierrehumbert and Malguzzi (1984). However, the observational studies 

of blocking by Illari (1982) and Miyakoda et al. (1983) show no closed streamlines, 

suggesting that they are not a necessary component of blocking. In that case, the 

existence of unforced equilibria may be a more appropriate description of the free 

modes observed in the atmosphere. 
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